直线与平面、平面与平面平行的判定(附答案)(14页).doc
《直线与平面、平面与平面平行的判定(附答案)(14页).doc》由会员分享,可在线阅读,更多相关《直线与平面、平面与平面平行的判定(附答案)(14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-直线与平面、平面与平面平行的判定(附答案)-第 14 页直线与平面、平面与平面平行的判定学习目标知识点一直线与平面平行的判定定理语言叙述符号表示图形表示平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行a思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗?答根据直线与平面平行的判定定理可知该结论错误.知识点二平面与平面平行的判定定理语言叙述符号表示图形表示一个平面内的两条相交直线与另一个平面平行,则这两个平面平行思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗?答不一定.这条直线与另一个平面平行或在另一个平面内.题型一直线与平面平行的判
2、定定理的应用例1如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:(1)EH平面BCD;(2)BD平面EFGH.证明(1)EH为ABD的中位线,EHBD.EH平面BCD,BD平面BCD,EH平面BCD.(2)BDEH,BD平面EFGH,EH平面EFGH,BD平面EFGH.跟踪训练1在四面体ABCD中,M,N分别是ABD和BCD的重心,求证:MN平面ADC.证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两点,连接PQ.因为M,N分别是ABD和BCD的重心,所以BMMPBNNQ21.所以MNPQ.又因为MN平面ADC,PQ平面ADC,所以MN平面AD
3、C.题型二面面平行判定定理的应用例2如图所示,在三棱柱ABCA1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB平面ADC1.证明由棱柱性质知,B1C1BC,B1C1BC,又D,E分别为BC,B1C1的中点,所以C1E綊DB,则四边形C1DBE为平行四边形,因此EBC1D,又C1D平面ADC1,EB平面ADC1,所以EB平面ADC1.连接DE,同理,EB1綊BD,所以四边形EDBB1为平行四边形,则ED綊B1B.因为B1BA1A,B1BA1A(棱柱的性质),所以ED綊A1A,则四边形EDAA1为平行四边形,所以A1EAD,又A1E平面ADC1,AD平面ADC1,所以A1E平面
4、ADC1.由A1E平面ADC1,EB平面ADC1,A1E平面A1EB,EB平面A1EB,且A1EEBE,所以平面A1EB平面ADC1.跟踪训练2已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,点G在BB1上,且AEFC1B1G1,H是B1C1的中点.求证:(1)E,B,F,D1四点共面;(2)平面A1GH平面BED1F.证明(1)AEB1G1,BGA1E2.又BGA1E,四边形A1EBG是平行四边形,A1GBE.连接FG.C1FB1G,C1FB1G,四边形C1FGB1是平行四边形,FGC1B1D1A1,FGC1B1D1A1,四边形A1GFD1是平行四边形,A1G
5、D1F,D1FEB.故E,B,F,D1四点共面.(2)H是B1C1的中点,B1H.又B1G1,.又,且FCBGB1H90,B1HGCBF,B1GHCFBFBG,HGFB.又由(1)知,A1GBE,且HGA1GG,FBBEB,平面A1GH平面BED1F.题型三线面平行、面面平行判定定理的综合应用例3在正方体ABCDA1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点.问:当点Q在什么位置时,平面D1BQ平面PAO?请说明理由.解当Q为CC1的中点时,平面D1BQ平面PAO.理由如下:连接PQ.Q为CC1的中点,P为DD1的中点,PQDCAB,PQDCAB,四边形ABQ
6、P是平行四边形,QBPA.又O为DB的中点,D1BPO.又POPAP,D1BQBB,平面D1BQ平面PAO.跟踪训练3如图,三棱柱ABCA1B1C1的底面为正三角形,侧棱A1A底面ABC,E,F分别是棱CC1,BB1上的点,EC2FB.M是线段AC上的动点,当点M在何位置时,BM平面AEF?请说明理由.解当M为AC中点时,BM平面AEF.理由如下:方法一如图1,取AE的中点O,连接OF,OM.O,M分别是AE,AC的中点,OMEC,OMEC.又BFCE,EC2FB,OMBF,OMBF,四边形OMBF为平行四边形,BMOF.又OF面AEF,BM面AEF,BM平面AEF.方法二如图2,取EC的中点
7、P,连接PM,PB.PM是ACE的中位线,PMAE.EC2FB2PE,CC1BB1,PEBF,PEBF,四边形BPEF是平行四边形,PBEF.又PM平面AEF,PB平面AEF,PM平面AEF,PB平面AEF.又PMPBP,平面PBM平面AEF.又BM面PBM,BM平面AEF.面面平行的判定例4已知在正方体ABCDABCD中,M,N分别是AD,AB的中点,在该正方体中是否存在过顶点且与平面AMN平行的平面?若存在,试作出该平面,并证明你的结论;若不存在,请说明理由.分析根据题意画出正方体,根据平面AMN的特点,试着在正方体中找出几条平行于该平面的直线,然后作出判断,并证明.解如图,与平面AMN平
8、行的平面有以下三种情况:下面以图为例进行证明.如图,取BC的中点E,连接BD,BE,DE,ME,BD,可知四边形ABEM是平行四边形,所以BEAM.又因为BE平面BDE,AM平面BDE,所以AM平面BDE.因为MN是ABD的中位线,所以MNBD.因为四边形BDDB是平行四边形,所以BDBD.所以MNBD.又因为BD平面BDE,MN平面BDE,所以MN平面BDE.又因为AM平面AMN,MN平面AMN,且AMMNM,所以由平面与平面平行的判定定理可得,平面AMN平面BDE.1.过直线l外两点,作与l平行的平面,则这样的平面()A.不可能作出 B.只能作出一个C.能作出无数个 D.上述三种情况都存在
9、2.经过平面外两点,作与平行的平面,则这样的平面可以作()A.1个或2个 B.0个或1个C.1个 D.0个3.若线段AB,BC,CD不共面,M,N,P分别为线段AB,BC,CD的中点,则直线BD与平面MNP的位置关系是()A.平行 B.直线在平面内C.相交 D.以上均有可能4.在正方体EFGHE1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1 B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1 D.平面E1HG1与平面EH1G5.梯形ABCD中,ABCD,AB平面,CD平面,则直线CD与平面的位置关系是_.一、选择题1.下列说法正确的是()若一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 平面 平行 判定 答案 14
限制150内