秒解三角形面积最值三法(4页).doc
《秒解三角形面积最值三法(4页).doc》由会员分享,可在线阅读,更多相关《秒解三角形面积最值三法(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-秒解三角形面积最值三法-第 4 页秒解三角形面积最值三法 从图中我们能看到,第(1)问已经解决,用到了正弦定理和余弦定理.如何求面积的最大值呢?从面积公式出发,因为已知角C,所以我们选择下面这个公式求解.求面积的最大值,就是要求ab的最大值.在高中阶段,求最值的方法主要有两个:一是函数法,二是基本不等式法.在平时解题中,我们可以尝试一题多解,然后总结哪类解法适合哪类题型.1方法1:函数法所谓函数法,就是要把目标值表示为某个变量的函数,然后求这个函数的最值或值域.选择哪个变量为自变量呢?先分析已知条件:已知一个角,外接圆半径,则这个角的对边也是可求的.受以上思路的启发,a,b边也能用含有角A或
2、者角B的式子来表示.A角和B角是相互制约的(和为定值),且无特殊性,我们任意选择其中一个作为自变量即可.下面要考虑两个问题:既然选择A为自变量,那么定义域是什么?把ab表示为A的函数,这个三角函数化简的方向是什么?先看定义域.注意看清楚题目的要求.比如有的题目要求三角形为锐角三角形,则对角的约束条件要加强一些.再说化简方向.中学阶段,三角函数的化简方向主要有两种:本题根据解析式特点,应该属于第(1)种情况.然后结合定义域范围,求函数的最大值和面积的最大值.2方法2:基本不等式法如果我们把ab整体考虑的话,可以试试余弦定理.为求得ab的最值,需要把平方项进行转化,自然联想到基本不等式.这种解法貌
3、似比方法1要简便的多.3方法3:几何法分析本题条件,我们知道:c边长是确定的,角C是确定的,三角形外接圆的半径是确定的.我们把三角形的外接圆画出来.这样一个事实清晰地呈现出来:AB是一条定长的弦,劣弧AB所对的圆周角为60度,点C在优弧ACB上运动.要使得三角形面积最大,就要使AB边的高线最长.显然,当C点运动到高线通过圆心时,高线最长.此时CA=CB,又角C为60度,所以三角形ABC为等边三角形.即当三角形为等边三角形时面积最大.小结:1.函数法是处理最值问题的通法,最容易想到,但是运算量略大;2.基本不等式法适合处理面积问题,又快又好;3.几何法把代数和几何联系起来,不容易想到,可以开阔眼界.如果把所求问题改为求三角形ABC周长的最大值,大家觉得哪种方法最好呢?聪明的你,不妨动笔一试.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 面积 最值三法
限制150内