第一讲解三角形的必备知识和典型例题及详解(15页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第一讲解三角形的必备知识和典型例题及详解(15页).doc》由会员分享,可在线阅读,更多相关《第一讲解三角形的必备知识和典型例题及详解(15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-第一讲。解三角形的必备知识和典型例题及详解-第 - 15 - 页解三角形的必备知识和典型例题及详解一、知识必备:1直角三角形中各元素间的关系:在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。2斜三角形中各元素间的关系:在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:ABC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其
2、他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。 3三角形的面积公式:(1)ahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)absinCbcsinAacsinB;4解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的
3、对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。(2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.6求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;(3)求解:正确运用正、余弦定
4、理求解;(4)检验:检验上述所求是否符合实际意义。二、典例解析题型1:正、余弦定理例1(1)在中,已知,cm,解三角形;解析:(1)根据三角形内角和定理,根据正弦定理, ;根据正弦定理,(2)在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。根据正弦定理,因为,所以,或当时, ,当时,点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器例2(1)在ABC中,已知,求b及A;解析:(1)=COS求可以利用余弦定理,也可以利用正弦定理:解法一:cos解法二:sin又,即(2)在ABC中,已知,解三角形解析:由
5、余弦定理的推论得:coscos点评:应用正弦定理时解法二应注意确定A的取值范围。* 2010年高考题(2010上海文数)18.若的三个内角满足,则(A)一定是锐角三角形. (B)一定是直角三角形.(C)一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.解析:由及正弦定理得a:b:c=5:11:13 由余弦定理得,所以角C为钝角(2010湖南文数)7.在ABC中,角A,B,C所对的边长分别为a,b,c,若C=120,c=a,则A.ab B.abC. ab D.a与b的大小关系不能确定【命题意图】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题(2010天津理数)
6、(7)在ABC中,内角A,B,C的对边分别是a,b,c,若,则A=(A) (B) (C) (D)【答案】A【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。由由正弦定理得所以cosA=,所以A=300【温馨提示】解三角形的基本思路是利用正弦、余弦定理将边化为角运算或将角化为边运算。(2010湖北理数)3.在中,a=15,b=10,A=60,则=A B C D 3【答案】D【解析】根据正弦定理可得解得,又因为,则,故B为锐角,所以,故D正确.(2010山东理数)(2010广东理数)11.已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a=1,b=, A+C=2B,则sinC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一 三角形 必备 知识 典型 例题 详解 15
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内