第一轮复习自己整理绝对经典导数--第一轮(12页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第一轮复习自己整理绝对经典导数--第一轮(12页).doc》由会员分享,可在线阅读,更多相关《第一轮复习自己整理绝对经典导数--第一轮(12页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-第一轮复习自己整理绝对经典导数-第一轮-第 11 页导数题型分类解析(2016版)一导数的概念1.导数的概念:函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f(x)或y|,即f(x)=。由导数的定义可知,求函数y=f(x)在点x处的导数的步骤: 求函数的增量=f(x+)f(x); 求平均变化率=; 取极限,得导数f(x)=。例1:若函数在区间内可导,且则 的值为( )A B C D例2:若,则(
2、 ) A. B C D2导数的意义:物理意义:瞬时速率,变化率 几何意义:切线斜率 代数意义:函数增减速率例3:【2015高考北京】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况:加油时间加油量(升)加油时的累计里程(千米)年月日年月日注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每千米平均耗油量为( )A升 B升 C升 D升例4:已知函数,则的值为 .例5:已知,则 3.导数的物理意义:如果物体运动的规律是s=s(t),那么该物体在时刻t的瞬间速度v=(t)。如果物体运动的速度随时间的变化的规律是v=v(t),则该物体在时刻t的加速度a=v(t)。例6:一
3、个物体的运动方程为其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是 例7:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图像可能是( )stOAstOstOstOBCD二:导数的运算1基本函数的导数公式: (C为常数) ; ; ; ; .例8:下列求导运算正确的是 ( )A B= C D 例9:若,则 真题:1.已知,则为 2:导数的运算法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:若C为常数,则.
4、即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:(v0)。3.复合函数的导数形如y=f的函数称为复合函数。复合函数求导步骤:分解求导回代。法则:y|= y| u|或者.例10:(1)函数的导数是 (2)函数的导数是 例11:;(2)三:利用已知条件求原函数解析式中的参数例12:已知多项式函数的导数,且,则= .例13:已知函数,它的图象过点,且在处的切线方程为,则= .四:切线相关问题 1.已知曲线上的点求切线方程例14:曲线yx32x4在点(1,3)处的切线的倾斜角为() A30 B45 C60
5、 D120例15:设函数 (a,bZ),曲线在点处的切线方程为y=3.(1)求的解析式(2)证明:曲线上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.2.已知曲线外的点求切线方程例16:已知曲线,则过点,且与曲线相切的直线方程为 .例17:求过点(-1,-2)且与曲线相切的直线方程.3.已知切线方程的斜率或倾斜角求切线方程例18:曲线在处的切线平行于直线,则点的坐标为( ) A B C和 D和例19:若曲线的一条切线与直线垂直,则的方程为( ) A B C D五:求函数的单调区间1.无参数的函数求单调性问题例20:证明:函数在区间(0,2)上是单调递增函数.例21:
6、确定函数的单调区间.2.含有参数的函数的单调性例22:已知函数,求函数的单调区间。例23:已知函数,讨论f(x)的单调性.例25:【2015高考广东,理19】设,函数 (1) 求的单调区间 ; (2) 证明:在上仅有一个零点;例26:【2015高考江苏,19】已知函数.试讨论的单调性;例27:已知,讨论的单调性六:结合单调性和极值求参数的取值范围例28:已知函数在区间上是减函数,则的取值范围是 .例29:已知函数,函数在区间内存在单调递增区间,则的取值范围 .例30:已知函数,若函数在区间内单调递减,则的取值范围 .例31:已知函数若在0,1上单调递增,则a的取值范围 .例32:已知函数在R上
7、有两个极值点,则实数的取值范围是 .例33:已知函数,若在上是单调函数,求实数的取值范围例34:如果函数在区间单调递减,则mn的最大值为( )(A)16 (B)18 (C)25 (D)真题:【2015高考重庆】设函数(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;(2)若在上为减函数,求的取值范围。七:恒成立问题及存在性成立问题1. 转化为分离参数问题求最值问题例35:已知函数,(1)若,求函数的单调区间和极值(2)当时,不等式恒成立,求实数的取值范围例36:已知函数(1)求函数的单调区间和极值;(2)若,恒成立,求实数的取值范围例37:已知函数在与时都取得极值,(1)求的值与函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一轮 复习 自己 整理 绝对 经典 导数 12
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内