《等腰三角形经典练习题(有难度)75188(10页).doc》由会员分享,可在线阅读,更多相关《等腰三角形经典练习题(有难度)75188(10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-等腰三角形经典练习题(有难度)75188-第 10 页等腰三角形练习题ABCDE一、计算题:1. 如图,ABC中,AB=AC,BC=BD,AD=DE=EB求A的度数FEADBC2.如图,CA=CB,DF=DB,AE=AD求A的度数3、AB于AB于E,DFBC交AC于点F,若EDF=70,求AFD的度数ABCDFEABCDE4. 如图,ABC中,AB=AC,BC=BD=ED=EA求A的度数ABCDE5. 如图,ABC中,AB=AC,D在BC上, BAD=30,在AC上取点E,使AE=AD,30求EDC的度数ACBD6. 如图,ABC中,C=90,D为AB上一点,作DEBC于E,若BE=AC,B
2、D=,DE+BC=1,求ABC的度数7. 如图,ABC中,AD平分BAC,若AC=AB+BDABCD求B:C的值二、证明题:ADFE8. 如图,DEF中,EDF=2E,FADE于点A,问:DF、AD、AE间有什么样的大小关系ABCDE9. 如图,ABC中,B=60,角平分线AD、CE交于点O求证:AE+CD=ACABCD12. 如图,ABC中,AB=AC,D为ABC外一点,且ABD=ACD =60求证:CD=AB-BD13.已知:如图,AB=AC=BE,CD为ABC中AB边上的中线ABCED求证:CD=CECABDE1214. 如图,ABC中,1=2,EDC=BAC求证:BD=EDCBEGA1
3、5. 如图,ABC中,AB=AC,BE=CF,EF交BC于点G求证:EG=FGFABDFEC16. 如图,ABC中,ABC=2C,AD是BC边上的高,B到点E,使BE=BD求证:AF=FCABCDEH17. 如图,ABC中,AB=AC,AD和BE两条高,交于点H,且AE=BE求证:AH=2BD18. 如图,ABC中,AB=AC, BAC=90,BD=AB, ABD=30ABCD求证:AD=DCAEBCD19. 如图,等边ABC中,分别延长BA至点E,延长BC至点D,使AE=BD求证:EC=ED20. 如图,四边形ABCD中,BAD+BCD=180,AD、BC的延长线交于点F,DC、AB的延长线
4、交于点E,E、F的平分线交于点HF求证:EHFHDCHEAB一、计算题:ABCDExx3x2x3x2x2x1. 如图,ABC中,AB=AC,BC=BD,AD=DE=EB求A的度数设ABD为x,则A为2x由8x=180得A=2x=45FEADBCXxx2xx2x2.如图,CA=CB,DF=DB,AE=AD求A的度数设A为x,由5x=180得A=363. 如图,ABC中,AB=AC,D在BC上,DEAB于E,DFBC交AC于点F,若EDF=70,ABCDFE求AFD的度数AFD=160ABCDExx2x2x3x3xx4. 如图,ABC中,AB=AC,BC=BD=ED=EA求A的度数设A为xA=5.
5、 如图,ABC中,AB=AC,D在BC上, BAD=30,在AC上取点E,使AE=AD,求EDC的度数ABCDExx1802x30x15x15设ADE为xEDC=AEDC=15EACBDF126. 如图,ABC中,C=90,D为AB上一点,作DEBC于E,若BE=AC,BD=,DE+BC=1,求ABC的度数延长DE到点F,使EF=BC可证得:ABCBFE 所以1=F由2+F=90,得1+F=90在RtDBF中, BD=,DF=1所以F =1=307. 如图,ABC中,AD平分BAC,若AC=AB+BDABCDE求B:C的值 在AC上取一点E,使AE=AB可证ABDADE 所以B=AED由AC=
6、AB+BD,得DE=EC,所以AED=2C故B:C=2:1二、证明题:CBADEP8. 如图,ABC中,ABC,CAB的平分线交于点P,过点P作DEAB,分别交BC、AC于点D、E求证:DE=BD+AE证明PBD和PEA是等腰三角形ADFEB9. 如图,DEF中,EDF=2E,FADE于点A,问:DF、AD、AE间有什么样的大小关系DF+AD=AE 在AE上取点B,使AB=ADOABCDEF10. 如图,ABC中,B=60,角平分线AD、CE交于点O求证:AE+CD=AC在AC上取点F,使AF=AE易证明AOEAOF,得AOE=AOF 由B=60,角平分线AD、CE,得AOC=120所以AOE
7、=AOF=COF=COD=60 故CODCOF,得CF=CD 所以AE+CD=AC11. 如图,ABC中,AB=AC, A=100,BD平分ABC,求证:BC=BD+ADABCDEF延长BD到点E,使BE=BC,连结CE在BC上取点F,使BF=BA易证ABDFBD,得AD=DF再证CDECDF,得DE=DF故BE=BC=BD+AD也可:在BC上取点E,使BF=BD,连结DF 在BF上取点E,使BF=BA,连结DE ABCDEF先证DE=DC,再由ABDEBD,得AD=DE,最后证明DE=DF即可ABCDEF12. 如图,ABC中,AB=AC,D为ABC外一点,且ABD=ACD =60求证:CD
8、=AB-BD 在AB上取点E,使BE=BD, 在AC上取点F,使CF=CD 得BDE与CDF均为等边三角形,只需证ADFAEDABCEDE13.已知:如图,AB=AC=BE,CD为ABC中AB边上的中线求证:CD=CE延长CD到点E,使DE=CD.连结AE 证明ACEBCECABDE12F14. 如图,ABC中,1=2,EDC=BAC求证:BD=ED在CE上取点F,使AB=AF易证ABDADF,得BD=DF,B=AFD由B+BAC+C=DEC+EDC+C=180所以B=DEC所以DEC=AFD所以DE=DF,故BD=EDFCBEGA15. 如图,ABC中,AB=AC,BE=CF,EF交BC于点
9、G求证:EG=FGABDFEC16. 如图,ABC中,ABC=2C,AD是BC边上的高,B到点E,使BE=BD求证:AF=FCABCDEH17. 如图,ABC中,AB=AC,AD和BE两条高,交于点H,且AE=BE求证:AH=2BD由AHEBCE,得BC=AH18. 如图,ABC中,AB=AC, BAC=90,BD=AB, ABD=30求证:AD=DCABCDEF 作AFBD于F,DEAC于E可证得DAF=DAE=15,所以ADEADF得AF=AE,由AB=2AF=2AE=AC,所以AE=EC,因此DE是AC的中垂线,所以AD=DCAEBCDF19. 如图,等边ABC中,分别延长BA至点E,延长BC至点D,使AE=BD求证:EC=ED延长BD到点F,使DF=BC,可得等边BEF, 只需证明BCEFDE即可ABDCEFHG12M20. 如图,四边形ABCD中,BAD+BCD=180,AD、BC的延长线交于点F,DC、AB的延长线交于点E,E、F的平分线交于点H求证:EHFH 延长EH交AF于点G 由BAD+BCD=180, DCF+BCD=180 得BAD=DCF,由外角定理,得1=2,故FGM是等腰三角形由三线合一,得EH
限制150内