第九章 多元函数微分法及其应用(26页).doc
《第九章 多元函数微分法及其应用(26页).doc》由会员分享,可在线阅读,更多相关《第九章 多元函数微分法及其应用(26页).doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-第九章第十章第十一章第十二章 第九章 多元函数微分法及其应用-第 25 页第十三章 多元函数微分法及其应用8. 1 多元函数的基本概念 一、平面点集n维空间 1平面点集 二元的序实数组(x, y)的全体, 即R2=RR=(x, y)|x, yR就表示坐标平面. 坐标平面上具有某种性质P的点的集合, 称为平面点集, 记作 E=(x, y)| (x, y)具有性质P. 例如, 平面上以原点为中心、r为半径的圆内所有点的集合是 C=(x, y)| x2+y2r2. 如果我们以点P表示(x, y), 以|OP|表示点P到原点O的距离, 那么集合C可表成 C=P| |OP|0为半径的圆的内部的点P (
2、x, y)的全体. 点P0的去心d邻域, 记作, 即 注: 如果不需要强调邻域的半径d, 则用U (P0)表示点P0的某个邻域, 点P0的去心邻域记作. 点与点集之间的关系: 任意一点PR2与任意一个点集ER2之间必有以下三种关系中的一种: (1)内点: 如果存在点P的某一邻域U(P), 使得U(P)E, 则称P为E的内点; (2)外点: 如果存在点P的某个邻域U(P), 使得U(P)E=, 则称P为E的外点; (3)边界点: 如果点P的任一邻域内既有属于E的点, 也有不属于E的点, 则称P点为E的边点. E的边界点的全体, 称为E的边界, 记作E. E的内点必属于E; E的外点必定不属于E;
3、 而E的边界点可能属于E, 也可能不属于E . 聚点: 如果对于任意给定的d0, 点P的去心邻域内总有E中的点, 则称P是E的聚点. 由聚点的定义可知, 点集E的聚点P本身, 可以属于E, 也可能不属于E . 例如, 设平面点集 E=(x, y)|1x2+y22. 满足1x2+y22的一切点(x, y)都是E的内点; 满足x2+y2=1的一切点(x, y)都是E的边界点, 它们都不属于E; 满足x2+y2=2的一切点(x, y)也是E的边界点, 它们都属于E; 点集E以及它的界边E上的一切点都是E的聚点. 开集: 如果点集E 的点都是内点, 则称E为开集. 闭集: 如果点集的余集E c为开集,
4、 则称E为闭集. 开集的例子: E=(x, y)|1x2+y22. 闭集的例子: E=(x, y)|1x2+y22. 集合(x, y)|1x2+y22既非开集, 也非闭集. 连通性: 如果点集E内任何两点, 都可用折线连结起来, 且该折线上的点都属于E, 则称E为连通集. 区域(或开区域): 连通的开集称为区域或开区域. 例如E=(x, y)|1x2+y21是无界开区域; 集合(x, y)| x+y1是无界闭区域. 2. n维空间 设n为取定的一个自然数, 我们用Rn表示n元有序数组(x1, x2, , xn)的全体所构成的集合, 即 Rn=RR R=(x1, x2, , xn)| xiR,
5、i=1, 2, , n. Rn中的元素(x1, x2, , xn)有时也用单个字母x来表示, 即x=(x1, x2, , xn). 当所有的xi (i=1, 2, , n)都为零时, 称这样的元素为Rn中的零元, 记为0或O . 在解析几何中, 通过直角坐标, R2(或R3)中的元素分别与平面(或空间)中的点或向量建立一一对应, 因而Rn中的元素x=(x1, x2, , xn)也称为Rn中的一个点或一个n维向量, xi称为点x的第i个坐标或n维向量x的第i个分量. 特别地, Rn中的零元0称为Rn中的坐标原点或n维零向量. 为了在集合Rn中的元素之间建立联系, 在Rn中定义线性运算如下: 设x
6、=(x1, x2, , xn), y=(y1, y2, , yn)为Rn中任意两个元素, lR, 规定 x+y=(x1+ y1, x2+ y2, , xn+ yn), lx=(lx1, lx2, , lxn). 这样定义了线性运算的集合Rn称为n维空间. Rn中点x=(x1, x2, , xn)和点 y=(y1, y2, , yn)间的距离, 记作r(x, y), 规定显然, n=1, 2, 3时, 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至. Rn中元素x=(x1, x2, , xn)与零元0之间的距离r(x, 0)记作|x|(在R1、R2、R3中, 通常将|x|记作|x|)
7、, 即采用这一记号, 结合向量的线性运算, 便得 在n维空间Rn中定义了距离以后, 就可以定义Rn中变元的极限: 设x=(x1, x2, , xn), a=(a1, a2, , an)Rn. 如果 |x-a|0, 则称变元x在Rn中趋于固定元a, 记作xa . 显然, xa x1a1, x2a2, , xnan . 在Rn中线性运算和距离的引入, 使得前面讨论过的有关平面点集的一系列概念, 可以方便地引入到n(n3)维空间中来, 例如, 设a=(a1, a2, , an)Rn, d是某一正数, 则n维空间内的点集 U(a, d)=x| x Rn, r(x, a)0, h0内取定一对值(r ,
8、h)时, V对应的值就随之确定. 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系其中R为常数. 这里, 当V、T在集合(V ,T) | V0, T0内取定一对值(V, T)时, p的对应值就随之确定.例3 设R 是电阻R1、R2并联后的总电阻, 由电学知道, 它们之间具有关系这里, 当R1、R2在集合( R1, R2) | R10, R20内取定一对值( R1 , R2)时, R的对应值就随之确定. 定义1 设D是R2的一个非空子集, 称映射f : DR为定义在D上的二元函数, 通常记为z=f(x, y), (x, y)D (或z=f(P), PD)其中点集D称为该函数的定义域
9、, x, y称为自变量, z称为因变量. 上述定义中, 与自变量x、y的一对值(x, y)相对应的因变量z的值, 也称为f在点(x, y)处的函数值, 记作f(x, y), 即z=f(x, y). 值域: f(D)=z| z=f(x, y), (x, y)D. 函数的其它符号: z=z(x, y), z=g(x, y)等. 类似地可定义三元函数u=f(x, y, z), (x, y, z)D以及三元以上的函数. 一般地, 把定义1中的平面点集D换成n维空间Rn内的点集D, 映射f : DR就称为定义在D上的n元函数, 通常记为 u=f(x1, x2, , xn), (x1, x2, , xn)
10、D, 或简记为 u=f(x), x=(x1, x2, , xn)D, 也可记为 u=f(P), P(x1, x2, , xn)D . 关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u=f(x)时, 就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域. 因而, 对这类函数, 它的定义域不再特别标出. 例如, 函数z=ln(x+y)的定义域为(x, y)|x+y0(无界开区域); 函数z=arcsin(x2+y2)的定义域为(x, y)|x2+y21(有界闭区域). 二元函数的图形: 点集(x, y, z)|z=f(x, y), (x, y)D称为二元函数z=f(x,
11、 y)的图形, 二元函数的图形是一张曲面. 例如 z=ax+by+c是一张平面, 而函数z=x2+y2的图形是旋转抛物面. 三. 多元函数的极限 与一元函数的极限概念类似, 如果在P(x, y)P0(x0, y0)的过程中, 对应的函数值f(x, y)无限接近于一个确定的常数A, 则称A是函数f(x, y)当(x, y)(x0, y0)时的极限. 定义2 设二元函数f(P)=f(x, y)的定义域为D, P0(x0, y0)是D的聚点. 如果存在常数A, 对于任意给定的正数e总存在正数d, 使得当时, 都有 |f(P)-A|=|f(x, y)-A|0, 取, 则当即时, 总有|f(x, y)-
12、0|0, 由于sin x在x0处连续, 故$d0, 当|x-x0|d时, 有 |sin x-sin x0|e. 以上述d作P0的d邻域U(P0, d), 则当P(x, y)U(P0, d)时, 显然 |f(x, y)-f(x0, y0)|=|sin x-sin x0|0, 使得对一切PD, 有|f(P)|M; 且存在P1、P 2D, 使得 f(P1)=maxf(P)|PD, f(P2)=minf(P)|PD, 性质2 (介值定理) 在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的任何值. 8. 2 偏导数 一、偏导数的定义及其计算法 对于二元函数z=f(x, y), 如果只有自变量
13、x 变化, 而自变量y固定, 这时它就是x的一元函数, 这函数对x的导数, 就称为二元函数z=f(x, y)对于x的偏导数. 定义 设函数z=f(x, y)在点(x0, y0)的某一邻域内有定义, 当y固定在y0而x在x0处有增量Dx时, 相应地函数有增量f(x0+Dx, y0)-f(x0, y0). 如果极限存在, 则称此极限为函数z=f(x, y)在点(x0, y0)处对x的偏导数, 记作, , , 或.例如类似地, 函数z=f(x, y)在点(x0, y0)处对y 的偏导数定义为记作 , , , 或fy(x0, y0). 偏导函数: 如果函数z=f(x, y)在区域D内每一点(x, y)
14、处对x的偏导数都存在, 那么这个偏导数就是x、y的函数, 它就称为函数z=f(x, y)对自变量的偏导函数, 记作, , , 或.偏导函数的定义式: . 类似地, 可定义函数z=f(x, y)对y的偏导函数, 记为 , , zy , 或. 偏导函数的定义式: . 求时, 只要把y暂时看作常量而对x求导数; 求时, 只要把x暂时看作常量而对y求导数. 讨论: 下列求偏导数的方法是否正确? 偏导数的概念还可推广到二元以上的函数. 例如三元函数u=f(x, y, z)在点(x, y, z)处对x的偏导数定义为其中(x, y, z)是函数u=f(x, y, z)的定义域的内点. 它们的求法也仍旧是一元
15、函数的微分法问题. 例1 求z=x2+3xy+y2在点(1, 2)处的偏导数. 解 , ., . 例2 求z=x2sin 2y的偏导数. 解 , . 例3 设, 求证: . 证 , . 例4 求的偏导数. 解 ; . 例5 已知理想气体的状态方程为pV=RT(R为常数), 求证: . 证 因为, ; 所以. 例5 说明的问题: 偏导数的记号是一个整体记号, 不能看作分子分母之商. 二元函数z=f(x, y)在点(x0, y0)的偏导数的几何意义: fx(x0, y0)=f(x, y0)x是截线z=f(x, y0)在点M0处切线Tx对x轴的斜率. fy(x0, y0) =f(x0, y)y是截线
16、z=f(x0, y)在点M0处切线Ty对y轴的斜率. 偏导数与连续性: 对于多元函数来说, 即使各偏导数在某点都存在, 也不能保证函数在该点连续. 例如在点(0, 0)有, fx(0, 0)=0, fy(0, 0)=0, 但函数在点(0, 0)并不连续.提示: 当点P(x, y)沿x轴趋于点(0, 0)时, 有 当点P(x, y)沿直线y=kx趋于点(0, 0)时, 有因此, 不存在, 故函数f(x, y)在(0, 0)处不连续. 类似地, 可定义函数z=f(x, y)对y的偏导函数, 记为 , , zy , 或. 偏导函数的定义式: . 二. 高阶偏导数 设函数z=f(x, y)在区域D内具
17、有偏导数那么在D内fx(x, y)、fy(x, y)都是x, y 的函数. 如果这两个函数的偏导数也存在, 则称它们是函数z=f(x, y)的二偏导数. 按照对变量求导次序的为同有下列四个二阶偏导数 如果函数z=f(x, y)在区域D内的偏导数fx(x, y)、fy(x, y)也具有偏导数, 则它们的偏导数称为函数z=f(x, y)的二阶偏导数. 按照对变量求导次序的不同有下列四个二阶偏导数其中, 称为混合偏导数.同样可得三阶、四阶、以及n 阶偏导数.二阶及二阶以上的偏导数统称为高阶偏导数. 例6 设z=x3y2-3xy3-xy+1, 求、和. 解 , ;由例6观察到的问题: 定理 如果函数z
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九章 多元函数微分法及其应用26页 第九 多元 函数 微分 及其 应用 26
限制150内