解三角形知识点复习(6页).doc
《解三角形知识点复习(6页).doc》由会员分享,可在线阅读,更多相关《解三角形知识点复习(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-解三角形知识点复习-第 6 页解三角形一、基础知识1、相关三角函数公式(1)两角和与差的正弦、余弦、正切公式(2)二倍角的正弦、余弦、正切公式 (3)降次公式 (4)辅助角公式其中2、三角形相关定理、公式(1)正弦定理2R (2R为三角形外接圆的直径)变形:a:b:csinA:sinB:sinC a2RsinA b2RsinB c2RsinC sinA sinB sinC(2)余弦定理a2b2c22bccosA b2a2c22accosB c2a2b22abcosC 变形:b2c2a22bccosA a2c2b22accosB a2b2c22abcosCcosA cosB cosC sin2
2、Asin2Bsin2C2sinBsinCcosA (正余弦定理相结合)(3)面积公式SabsinCbcsinAacsinB(4)内角和定理任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.ABC C(AB) Sin(A+B)sinC,cos(A+B)cosC,sincos锐角三角形最大角是锐角三内角都是锐角三内角的余弦值为正值任两角和都是钝角一角正弦大于另一角的余弦()任意两边的平方和大于第三边的平方.(5)其他定理两边之和大于第三边,两边之差小于第三边;大边对大角,小边对小角(6)两个常用结论AB是sinAsinB的充要条件;若sin2Asin2B,则AB或AB二、基本方法1、
3、解三角形条件解法已知两角一边,如A、B、a用正弦定理,求得b.已知两边和其中一边的对角,如a、b、A方法一:用正弦定理,求得,若则无解,若则一解,若则可能有两解、一解,要结合大边对大角定理进行判断,如果B是大角则有两解,否则一解.方法二:用余弦定理,求得c.已知两边和其夹角,如a、b、C用余弦定理,求得c,再用余弦定理求出另外两角.已知三边,如a、b、c用余弦定理,求得A,同理求得B、C.2、三角形综合问题的解法(1)突破口是边角关系的分析,正余弦定理都能实现边角关系的互化,但边化角往往用正弦定理,角化边往往用余弦定理。(2)问题中若涉及面积问题,首先选择面积公式,弄清条件或需要求的几个量,选
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 知识点 复习
限制150内