超好的散热器设计文章.doc
《超好的散热器设计文章.doc》由会员分享,可在线阅读,更多相关《超好的散热器设计文章.doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、今天玩家堂给大家带来一篇系列文章热设计基础。文章标题看似很唬人,其实内容非常浅显易懂,图文并茂(当然前提是你要认真读)。本文为索尼计算机娱乐设计公司2部5课,课长凤康宏撰写。虽然作者的意图是为了向大家解说SONY PS3散热设计过程,但是其中大篇幅介绍了热处理基础与各种散热处理方法及其收益,并辅以少量公式计算,同时还向读者展示了散热设计的实例(既包括整体散热设计也包括了部件散热设计)。文中作者力图向大家阐述如何把复杂的问题简单化,并转化为我们所熟知的经验。这其中作者向我们介绍了在散热处理上风扇的选择(哪些参数才是决定性的,如何看参数等等内容)、风道的处理等一系列基础问题,文章中涉及的很多基础性
2、质与定理性质的内容完全可以用到机箱散热、CPU散热,甚至是电源散热上,可以说这一系列文章可以作为DIY玩家的参考资料也不为过。文章目录:第一章 热即是“能量”,一切遵循能量守恒定律第二章 风扇只需根据能量收支决定第三章 散热片设计的基础是手工计算第四章 根据部件的热性能考虑空气流动与配置第五章 新款PS3的薄型化,要求重新设计冷却机构(上)第六章 新款PS3的薄型化,要求重新设计冷却机构(下)内容简介:其中第一章是通篇的基础,为下面各章节的出发点;第二、第三章则分别介绍了散热处理需要敲定的两个部件;第四章则是如何规划整个散热系统;第五、第六章则是介绍这些原理与散热经验是如何在PS3散热器上得以
3、表达。在开发使用电能的电子设备时,免不了与热打交道。“试制某产品后,却发现设备发热超乎预料,而且利用各种冷却方法都无法冷却”,估计很多读者都会有这样的经历。如果参与产品开发的人员在热设计方面能够有共识,便可避免这一问题。下面举例介绍一下非专业人士应该知道的热设计基础知识。在大家的印象里,什么是“热设计”呢?是否认为像下图一样,是“一个接着一个采取对策”的工作呢?其实,那并不能称为是“热设计”,而仅仅是“热对策”,实际上是为在因热产生问题之后,为解决问题而采取的措施。 如果能够依靠这些对策解决问题,那也罢了。但是,如果在产品设计的阶段,其思路存在不合理的地方,无论如何都无法冷却,那么,很可能会出
4、现不得不重新进行设计的最糟糕的局面。 而这种局面,如果能在最初简单地估算一下,便可避免发生。这就是“热设计”。正如“设计”本身的含义,是根据产品性能参数来构想应采用何种构造,然后制定方案。也可称之为估计“大致热量”的作业。 虽说如此,但这其实并非什么高深的话题。如果读一下这篇连载,学习几个“基础知识”,制作简单的数据表格,便可制作出能适用于各种情况的计算书,甚至无需专业的理科知识。 第1章从“什么是热”这一话题开始介绍。大家可能会想“那接下来呢”?不过现在想问大家一个问题。热的单位是什么? 如果你的回答是“”,那么希望你能读一下本文。 热是能量的形态之一。与动能、电能及位能等一样,也存在热能。
5、热能的单位用“J”(焦耳)表示。1J能量能在1N力的作用下使物体移动1m,使1g的水温度升高0.24。 设备会持续发热。像这样,热量连续不断流动时,估计用“每秒的热能量”来表示会更容易理解。单位为“J/s”。J/s也可用“W”(瓦特)表示。 不只是热量,所有能量都不会突然生成,也不会突然消失。它们不是传递到其他物质就是转换为其他形态的能量。 比如,100J的能量可在100N力的作用下将物体移动1m。使该“物体移动”后,能量并不是消失了。比如,使用能量向上提升物体时,能量会以位能的形态保存在物体中。使用能量使物体加速运动时,则以动能的形态保存在物体中。 100J的能量可使100g水的温度升高约0
6、.24。这并不是通过升高水的温度消耗了100J的能量。而是在水中作为热能保存了起来。 如上所述,能量无论在何处都一定会以某种形态保存起来。能量既不会凭空消失,也绝不会凭空产生。这就是最重要“能量守恒定律”。 现在大家已经知道热是一种能量,其单位用J表示了吧!能量会流动,如果表示每秒的能量,单位则为W。 那么让我们回到最初提出的那个问题。是温度单位。温度是指像能量密度一样的物理量。它只不过是根据能量的多少表现出来的一种现象。即使能量相同,如果集中在一个狭窄的空间内,温度就会升高,而大范围分散时,温度就会降低。 PS3等电器产品也完全遵守能量守恒定律。从电源插头流入的电能会在产品内部转换为热能,然
7、后只会向周围的物体及空气传递。 接通电源后一段时间内,多半转换的热能会被用于提高装置自身的温度,而排出的能量仅为少数。之后,装置温度升高一定程度时,输入的能量与排除的能量必定一致。否则温度便会无止境上升。 很多人会认为,“热设计是指设计一种可避免发热并能使其从世界上消失的机构”。 就像前面指出的那样,说是“发热”,但并非凭空突然产生热能。说是“冷却”,但也并不是热能完全消失。 如图所示,热设计是指设计一种“将W的能量完全向外部转移的机构”,其结果是可达到“以下”。大家首先要有一个正确的认识! 下面看一下热传递的方式。 热能传递只有3种方式。分别为“传导”、“对流”及“热辐射”。请注意,传导与对
8、流表面文字相似,但绝不相同! 传导是指在物体(固体)中传播的热能的传递。铝与铁的导热性都很出色。这就是传导。 如果用数值表示导热性,树脂为0.20.3,铁为49,铝为228,铜为386。这些都是指该物质的导热率,单位为“W/(m)”。越容易导热的物质,该数值越大。 如果用一句话来表述导热率的含义,即“有一种长1m、断面积为1m2的材料,其两端的温度差为1时,会流动多少W”。如果将其单位“W/(m)”写成 大家是不是立刻就明白了呢? 对流是指热能通过与物体表面接触的流体,从物体表面向外传递的方式。请大家联想一下吃热拉面时的情景。用嘴吹一下,拉面就会变凉。那就是利用热对流使热从拉面表面向吹出的空气
9、传递的结果。 这也可用数值表示。比如,流体为水,散热面水平放置时,自然对流就为(2.35.8)100,受迫对流就为(1.25.8)1000,水沸腾时就为(1.22.3)10000。这就是各种情况下的传热系数,单位为“W/(m2)”。 这个单位很容易理解。由于是“W/(面积温度差)”,因此它的意思就是“面积为1平方米的面与周围流体的温度差为1时,会从该面传递多少W热量”。 该传热系数受散热面设置状况的影响较大。根据流体的种类、流速及流动方向等,数值会发生变化。因此,计算传热系数的公式会根据不同的情况发生改变。 比如,有一个温度均匀的平板,如果在与其平行的方向受迫流动空气时(受迫对流),可用左图的
10、公式求出传热系数。从该公式可知以下两点。 1、传热系数与流速的平方根成比例 。比如: 流速提高至2倍,传热系数也只提高至1.4倍2、如果冷却面积相同,流动的距离越长,传热系数越低。比如:在冷却面上流动的空气吸热后,会在温度上升的同时继续流动,因此冷却能力会越来越弱 总之,冷却热的物体时,与使用强风使其冷却的方法相比,横向扩大散热面,使整体通风的方法更有效。 下面介绍一下自然对流的情况。空气自然对流时的传热系数用下图的公式求解。 这里出现两个新词,分别为“姿势系数”与“代表长度”。这些是根据面的形状及设置方向定义的。右图分别显示了垂直与水平设置平板时的情况,其他面形状及设置方向也各有姿势系数及代
11、表长度。 辐射是指经由红外线、光及电磁波等从物体表面传递的方式。被电炉发出的红外线照射后,会感到温暖。这就是热辐射。太阳的热量穿过真空宇宙到达地球,这也属于辐射。 辐射中热量是否易于吸收与放出取决于表面的温度及颜色等。就颜色大体而言,黑色容易吸放,而白色较难。 如果用数值来表示,其数值范围为01。理论上来讲,全黑物质为1,铝为0.050.5,铁为0.60.9,黑色树脂为0.80.9。这就是热辐射率(没有单位)。 此处公开的公式是一个近似式,用于计算设置在空气中的物体向周围的空气进行辐射时传递的热量。物体与空气的温度差并不是很大时,可利用该公式准确计算出结果。 热传递只有前面提到的3种方式。利用
12、这些公式可计算出“从表面温度为的方形箱体表面会向空气中释放多少W的热量”。 至此,总结了“热设计的3条基础知识”。不论是感觉“公式很难”的人,还是“早就知道”的人,只要了解这3条就足够了。 总而言之,其根本是要“遵守原理原则”。不违背原理原则,一点一点仔细设计非常重要。就像中学与大学教科书中记载的那样,基础中的基础最为重要。 下面,估计一下实际设备的大小,然后试着计算从该箱体的表面会释放出多少热量。假设将大小与第一代PS3几乎相同(325mm275mm100mm)的方形箱体竖着放置,并且假设该箱体内外不换气。 环境温度按照产品的工作保证温度决定。在此,工作保证温度最高为35,假设再加上5作为设
13、计余量。 下面再确定一下设备外装的表面温度吧!该温度由作为产品性能参数的容许温度决定。在此,假设箱体的表面温度同样为60。并且,将由外装使用的素材及颜色决定的表面辐射率设定为0.8。 此时,在其内部生成的不对,应该是在箱体内部由电转换为热量的能量,从箱体的表面通过热对流及热辐射的方式向外部转移。另外,估计设备表面与外部接触的部分只有小橡胶底座,因此不会通过热传导方式传递热量。 并且,暂不考虑散热片设计情况及处理器的温度。这里仅针对箱体大小、表面情况及外部温度决定的能量进出收支计算。 会是多少W呢?第一代PS3的最大发热量为380W。试想一下,其中来自外壳表面的散热会是多少? 从箱体表面放出的热
14、量为54.8W。而这是外壳表面温度均为60时的数值。实际上,外壳的表面温度分布不均,只有一部分为温度60。估计大部分无法达到规格温度。粗略估算一下,整体仅有6成为60,只能散热32.9W。估计现实中会更少。 综上所述,PS3大小的设备从外壳表面最多只能散热30W左右。可悲的是,这就是现实。产品的发热量如果为100W,剩余的70W必须采用其他方式强制释放出来。380W的话,剩下的就是350W。下一章将介绍为此而采用的换气措施。与PS3同等大小的箱体所产生的自然散热,最多也只有30W左右,这在确认热相关基础知识的第一篇文章中已经介绍过。有时必须利用某些手段强制性地排出剩余热能。此时,电子产品中使用
15、的是专门用来在产品内外进行换气的风扇。该风扇根据能量的收支计算来决定。下面将介绍如何选择风扇。在讲解热传递基础知识的本连载第一篇文章中得知,与第一代“PlayStation 3”(PS3)大小(325mm275mm100mm)基本相同的方形箱体表面,“最多只能散热30W左右”。而事实上,有许多人无法认同这种解释。他们的观点大致有以下三种。“好像有辐射特性非常出色的涂料?”“外壳全部采用铝!”“如果采用水冷方式的话,可以进一步减小尺寸?”在进入正题之前,我们先就这些观点进行探讨。首先是“魔术涂料”。实际上,的确有一种可以提高表面辐射率的涂料。那么,我们将在上次计算中为0.8的辐射率,改为理论最高
16、值1.0进行计算。虽然因辐射而产生的散热量增至1.25倍,但整体上约为38W,只不过比上次的33W增加了5W。在“发热量较少,而换气的确困难”的状况下,“魔术涂料”可成为强有力的帮手,但也并不是将散热量增至两倍或三倍。“外壳全部采用铝!多花成本也无所谓!”这样的话对于我这样的机械爱好者真是求之不得然而,这种想法的出发点应该是“均匀外壳表面的温度,从整个表面进行散热”吧。这种情况下的答案显而易见。上章中,考虑到外壳表面的温度分布,粗略地估算为有“六成”分布达到60,散热量估计为33W。假设外壳表面完全没有温度分布,整个表面均为60,那么不打“六折”,散热量约为55W。那么,反过来算一下,要想通过
17、外壳表面散热300W,表面温度必须为多少。而且,辐射率为理论上的最高值1.0,同时没有温度分布!在这种条件下进行计算,得到的结果竟然是115。这种温度岂止是摸上去会不会导致烧伤的问题!这种游戏机太不安全了,无法销售。“如果采用水冷方式的话,将可以很好地降温”。许多人都有这种简单的想法。确实,自来水是比较凉。如果从自来水的水龙头开始拉长水管连接到产品上的话,肯定可以很好地降温。但是,不能这么做吧。冷却机构基本上由三个要素构成。受热部:承受发热源的热量传热部:将热量从受热部传递到散热部散热部:将热量传递到大气中水冷是指经由水进行热传递。其原理是暂且将发热源的热量传递到水中,然后水(应该是热水)流动
18、到散热部,最后排放到大气中。水冷后的水只在装置中循环,最终必须通过某些方法将热量排放到大气中。原则上,与的大小即使采用水冷方式也不会发生变化。另外,如果采用水冷方式,就需要泵与配管,这样一来冷却机构的体积就会变大。水冷可以在下列几种情况中发挥作用。汽车的发动机(发热源)与散热器(散热部)就是代表性例子。 由于发热部的热密度较大,因此希望提高受热部的热导率 发热部与散热部远远地隔开 由于总发热量较多、散热部非常大,因此希望将热量扩散到散热部的各个角落 发热源较多,希望通过一个散热部统一进行散热 至此,各位读者心中已经有一个大致的答案了吧。即使运用各种方法,也无法从PS3这种大小的产品表面自然地放
19、出200W或300W的热量。剩余部分只能吸入空气,然后使热量渗入到空气中,最后将变暖的空气排放到产品外部。例如,如果整个装置的发热量为100W,则剩余的70W必须通过“换气”排出去。那么,当流入空气温度为40、流出空气温度为60时,为了排出70W热量需要多少空气量呢?根据空气热容量按照下面的公式进行计算后得知,需要毎秒2.7L(毎分0.162m3)的空气。即便只是想象一下,也是个很大的量啊。该风量无法通过自然换气排出来,稍后将会详细地进行介绍。最终结论是需要风扇。另外,第一代PS3的热处理能力为500W,因此,为了通过换气将减去30W后剩余的470W排出去,需要每分钟1.1m3的换气量。不过,
20、在实际的产品开发中,很难按照理论值进行。会使用稍多的流量。换言之,“能够以尽量接近理论值的较少的空气量进行冷却”将决定冷却设计的优劣。如何减少未发挥作用而白白通过的空气,将成为显示技术实力的关键。此处将介绍在本连载中今后会用到的便捷工具。这就是称为“P-Q图”或“P-Q特性”的图表,纵轴表示静压(P)、横轴表示流量(Q)。装置的阻力特性请想象一下有吸气口与排气口的装置。空气从吸气口进入后,会在装置内流动,然后从排气口出来。此时,装置中塞满了部件,因此会阻碍空气流动。如果在吸气口施加低静压,会有少量空气流动起来,如果施加高静压则会有大量的空气流动起来。这是当然的。如果将这种关系用图表来表示,会形
21、成一条向右上方攀升的线。表示装置的通风阻力,即“向该装置中施加多少静压后,会有多少空气会流动起来”。一般称为“系统阻抗” (System Impedance)。风扇的性能特性当被问及“该风扇的性能如何”时,如果可以用“10马力”等一个数值来表达就好了,但却不能这么做。这是因为,即便是同一个风扇,如果安装在阻力较大的箱体上,就只能使少量空气流动起来,如果安装在阻力较小的箱体上,则可以使更多的空气流动起来。将这种关系用图表来表示的话,会形成一条向右下方下降的线。就是表示风扇能力的曲线。表示“风扇在多大的静压时,会使多少空气流动起来”。一般称为“风扇的P-Q特性”。工作点那么,在装置中安装风扇时,会
22、产生多大的静压、流动多大的流量?表示该答案的就是与的交点工作点。在对强制进行空气冷却的产品进行设计,最先决定的是风扇的种类与大小。风扇的种类与大小先于散热片(散热板)与微细内部构造进行决定,这也许会让部分读者觉得意外。更准确的说,是已经被决定了。风扇有多种型号,P-Q特性线的斜率会因种类而发生变化。这里将介绍三种具有代表性的风扇。轴流风扇:这是一种最普通的像电风扇扇翼一样的风扇。风从扇翼的旋转轴方向排出。特点是静压低、风量大。“PlayStation 2”(PS2)中采用了这种型号的风扇。离心式风扇:这是一种利用离心力引起空气流动的风扇。风从圆周方向排出。特点是静压稍高、风量稍少。PS3中采用
23、的风扇就是这种型号。横流风扇(Cross flow Fan):从旋转圆筒的一侧曲面大量吸入空气,然后从另一曲面大量排出。特点是风量超大、静压超低。适合换气量非常大、系统阻抗较低的产品。代表性例子就是空调的室内机。另外,即便是相同种类的风扇,如果大小与旋转次数不同,风量与静压也会发生变化。如果都变大的话,P-Q特性线就会偏向右上方。下面将把各种风扇的特性绘制到P-Q图中。将各种风扇P-Q特性线的大致中间值作为代表值,两轴采用对数显示方式。按照横流风扇、轴流风扇与离心式风扇的顺序,静压越来越高。作为参考,还加入了机械式压缩机的数值。正如读者想像的那样,压力非常大,但流量非常少。将正在设计的产品所需
24、风量与所需静压代入该图中,就可以判断出哪种型号的风扇是最佳选择。那么,笔者将以第一代PS2及第一代PS3为例来介绍风扇的选择方法。首先,估计所需的换气量。第一代PS2为了向空气中排出80W,所需的换气量为毎分钟0.24m3。第一代PS3为了承受470W的热量,需要毎分钟1.1m3的换气量。然后,估计系统阻抗。虽然只是“估计”,但实际上并不能通过纸上计算轻松地得出结果。对类似的机型进行测量,或者试制样机进行实验,这样更快吧。从结论来看,第一代PS2约为15Pa,第一代PS3约为300Pa。两者之间的差距起因于空气的流动路径。PS2采用的是从外壳前面吸气,然后冷却散热片与电源,最后直接从外壳背面进
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 散热器 设计 文章
限制150内