2022年高中数学立体几何知识点归纳总结.docx
《2022年高中数学立体几何知识点归纳总结.docx》由会员分享,可在线阅读,更多相关《2022年高中数学立体几何知识点归纳总结.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品_精品资料_高中数学立体几何学问点归纳总结一、立体几何学问点归纳第一章 空间几何体(一)空间几何体的结构特点( 1)多面体由如干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体.其中,这条定直线称为旋转体的轴.( 2)柱,锥,台,球的结构特点1. 棱柱1.1 棱柱 有两个面相互平行,其余各面都是四边形,并且每相邻两个四边形的公共边都可编辑资料 - - - 欢迎下载精品_精品资料_相互平行,由这些面所围成的几何体叫做棱柱.1.2 相关棱柱几何体系列 (
2、棱柱、斜棱柱、直棱柱、正棱柱)的关系:EDFCl侧面AB底面侧棱可编辑资料 - - - 欢迎下载精品_精品资料_ 棱柱斜棱柱棱垂直于底面直棱柱底面是正多形其他棱柱EDFCAB正棱柱可编辑资料 - - - 欢迎下载精品_精品资料_四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体1.3 棱柱的性质:侧棱都相等,侧面是平行四边形.两个底面与平行于底面的截面是全等的多边形.过不相邻的两条侧棱的截面是平行四边形.直棱柱的侧棱长与高相等,侧面与对角面是矩形.1.4 长方体的性质:长方体一条对角线长的平方等于一个顶点上三条棱的D1C122
3、22可编辑资料 - - - 欢迎下载精品_精品资料_平方和.【如图】AC1ABADAA1A1B1D可编辑资料 - - - 欢迎下载精品_精品资料_(明白)长方体的一条对角线AC1 与过顶点A 的三条CAB可编辑资料 - - - 欢迎下载精品_精品资料_棱 所 成 的 角 分 别 是, , 那 么可编辑资料 - - - 欢迎下载精品_精品资料_222222coscoscos1, sinsinsin2 .可编辑资料 - - - 欢迎下载精品_精品资料_(明白)长方体的一条对角线AC1 与过顶点 A 的相邻三个面所成的角分别是, , ,可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 -
4、- - 欢迎下载精品_精品资料_就 cos2cos2cos22 , sin 2sin 2sin21 .可编辑资料 - - - 欢迎下载精品_精品资料_1.5 侧面绽开图 :正 n 棱柱的侧面绽开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形 .可编辑资料 - - - 欢迎下载精品_精品资料_1.6 面积、体积公式: 为棱柱的高)S直棱柱侧S直棱柱全c hc h2S底, V棱柱S底h(其中c 为底面周长, h可编辑资料 - - - 欢迎下载精品_精品资料_2. 圆柱O2.1 圆柱以矩形的一边所在的直线为旋转轴,其A余各边旋转而形成的曲面所围成的几何体叫圆柱.B母线2.2 圆柱的性质:
5、上、下底及平行于底面的截面都是等圆.过轴的截面(轴截面)是全等的矩形.C轴轴截面可编辑资料 - - - 欢迎下载精品_精品资料_2.3 侧面绽开图: 圆柱的侧面绽开图是以底面周长和母线长为邻边的矩形 .22.4 面积、体积公式 :AOC侧面B底面可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_S 圆柱侧 = 2 rh . S 圆柱全 = 2rh3. 棱锥2 r,V 圆柱=S 底 h=r 2h (其中 r 为底面半径, h 为圆柱高)可编辑资料 - - - 欢迎下载精品_精品资料_3.1 棱锥有一个面是多边形,其余各面是有一个公共顶点的三角形,由这
6、些S高顶点侧面可编辑资料 - - - 欢迎下载精品_精品资料_面所围成的几何体叫做棱锥.侧棱正棱锥假如有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥.3.2 棱锥的性质:平行于底面的截面是与底面相像的正底面ADOBHC斜高多边形,相像比等于顶点到截面的距离与顶点究竟面的距离之比.正棱锥各侧棱相等,各侧面是全等的等腰三角形.正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面可编辑资料 - - - 欢迎下载精品_精品资料_边长一半,构成四个直角三角形.)(如上图:SOB,SOH ,SBH,OBH 为直角三角形)可编辑资料 - - -
7、欢迎下载精品_精品资料_3.3 侧面绽开图: 正 n 棱锥的侧面绽开图是有n 个全等的等腰三角形组成的.可编辑资料 - - - 欢迎下载精品_精品资料_3.4 面积、体积公式: S 正棱锥侧 =1ch , S 正棱锥全 =211chS底, V 棱锥 =S底23h .(其中 c 为底面可编辑资料 - - - 欢迎下载精品_精品资料_周长, h 侧面斜高, h 棱锥的高)可编辑资料 - - - 欢迎下载精品_精品资料_4. 圆锥4.1 圆锥 以直角三角形的始终角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥.4.2 圆锥的性质:平行于底面的截面都是圆,截面直径与底面直径之比等于
8、顶点到截面的距离与顶点究竟面的距离之比.可编辑资料 - - - 欢迎下载精品_精品资料_轴截面是等腰三角形.如右图:SABS顶点可编辑资料 - - - 欢迎下载精品_精品资料_2如右图: l22hr.母线轴可编辑资料 - - - 欢迎下载精品_精品资料_4.3 圆锥的侧面绽开图: 圆锥的侧面绽开图是以顶点为圆心,以母线长为半径的扇形.4.4 面积、体积公式:12h侧面l轴截面可编辑资料 - - - 欢迎下载精品_精品资料_S 圆锥侧=rl , S 圆锥全 =r rl , V 圆锥 =3r h (其中rAOB可编辑资料 - - - 欢迎下载精品_精品资料_r 为底面半径, h 为圆锥的高, l
9、为母线长)5. 棱台5.1 棱台 用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.5.2 正棱台的性质:底面SD上底面C侧棱可编辑资料 - - - 欢迎下载精品_精品资料_各侧棱相等,各侧面都是全等的等腰梯形.正棱台的两个底面以及平行于底面的截面是正多边形.高下底面AOM B侧面斜高DCON可编辑资料 - - - 欢迎下载精品_精品资料_ 如右图:四边形形OMNO , OBBO 都是直角梯顶点AB可编辑资料 - - - 欢迎下载精品_精品资料_棱台常常补成棱锥讨论.如右图:SOM 与 SON , SO B与 SOB相像 ,留意考虑相像比.1可编辑资料 - - - 欢迎下载精
10、品_精品资料_5.3 棱台的表面积、 体积公式:S全S上底 S下底S侧,V棱台 (S3SSS h ,(其中S, S是可编辑资料 - - - 欢迎下载精品_精品资料_上,下底面面积,h 为棱台的高)6. 圆台6.1 圆台用平行于圆锥底面的平面去截圆锥, 底面与截面之间的部分叫做圆台.6.2 圆台的性质:圆台的上下底面,与底面平行的截面都是圆.圆台的轴截面是等腰梯形.圆台常常补成圆锥来讨论.如右图:SAr O轴h母线l轴截面上底面D侧面可编辑资料 - - - 欢迎下载精品_精品资料_SOA与SOB相像 ,留意相像比的应用 .BRCO下底面可编辑资料 - - - 欢迎下载精品_精品资料_26.3 圆
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中数学立体几何知识点归纳总结 2022 年高 数学 立体几何 知识点 归纳 总结
限制150内