数学建模-灰色预测模型(.ppt
《数学建模-灰色预测模型(.ppt》由会员分享,可在线阅读,更多相关《数学建模-灰色预测模型(.ppt(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、灰色预测模型及其应用,洛阳理工学院数理部,灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测. 预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断.,灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论.灰色预测是对灰色系统所做的预测.目前常用的一些预测方法(如回归分析等),需要较大的样本.若样本较小,常造成较大误差,使预测目标失效.灰色
2、预测模型所需建模信息少,运算方便,建模精度高,在各种预测领域都有着广泛的应用,是处理小样本预测问题的有效工具.,1 灰色系统的定义和特点 灰色系统的模型 Sars 疫情 4 销售额预测 5 城市道路交通事故次数的灰色预测 6 城市火灾发生次数的灰色预测 7灾变与异常值预测,1 灰色系统的定义和特点,灰色系统的定义和特点,灰色系统理论是由华中理工大学邓聚龙教授于1982年提出并加以发展的。二十几年来,引起了不少国内外学者的关注,得到了长足的发展。目前,在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。特别是它对时间序列短、统计数据少、信息
3、不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用.在这里我们将简要地介绍灰色建模与预测的方法.,一、灰色系统的定义和特点,1. 灰色系统的定义,灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统.作为两个极端,我们将称信息完全未确定的系统为黑色系统; 称信息完全确定的系统为白色系统. 区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。,1灰色系统的定义和特点,2. 灰色系统的特点,(1)用灰色数学处理不确定量,使之量化.,(2)充分利用已知信息寻求系统的运动规律.,(3)灰色系统理论能处理贫信息系统.,1灰色系统的定义和特点,常用的
4、灰色预测有五种:,(1)数列预测,即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。,(2)灾变与异常值预测,即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。,(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生在一年内某个特定的时区或季节的灾变预测。,(4)拓扑预测,将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点。,(5)系统预测. 通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。,2
5、 灰色系统的模型,在灰色系统理论中,把一切随机变量都看作灰色数,即使在指定范围内变化的所有白色数的全体,对灰数处理主要是利用数据处理的方法去寻求数据间的内在规律,通过对已知数据列中的数据进行处理而产生新的数据列,以此来研究寻求数据的规律性,这种方法称为数据的生成。,常用的方法有:,累加生成 累减生成 均值生成,1)累加生成,把数列各时刻数据依次累加的过程称为累加生成过程,记为AGO,有累加生成过程所得到的新数列称为累加生成数列。,设原始数列为 ,令,则称 为数列 的1次累加生成,数 列 称为数列 的 1次累加生成数列。类似有,称之为 的r次累加生成,记 称之为 的r次累加生成数列,2)累减生成
6、,对于原始数据列依次做前后相邻的两个数据相减的运算过程称为累减生成过程,记为IAGO,,设原始数列为 ,令,则称 为数列 的1次累减生成,一般地,对于r次累加生成数列 则称,为数列 的r次累减生成,2)累减生成,3)均值生成,设原始数列 则称 与 为数列 的邻值, 为后邻值, 为前邻值。,对于常数 ,则称,为有数列 的邻值在生成系数(权) 下的邻值生成数,特别地,当生成系数 时则称,为邻均值生成数,即等权邻值生成数,2 灰色系统的模型,通过下面的数据分析、处理过程,我们将了解到,有了一个时间数据序列后,如何建立一个基于模型的灰色预测。 1. 数据的预处理 首先我们从一个简单例子来考察问题. 【
7、例7.1】 设原始数据序列,7.2 灰色系统的模型,对数据累加,于是得到一个新数据序列,7.2 灰色系统的模型,归纳上面的式子可写为 称此式所表示的数据列为原始数据列的一次累加生成,简称为一次累加生成.显然有,将上述例子中的,分别做成图7.1、图7.2.,可见图7.1上的曲线有明显的摆动,图7.2呈现逐渐 递增的形式,说明原始数据的起伏已显著弱化.可以 设想用一条指数曲线乃至一条直线来逼近累加生成 数列,7.2 灰色系统的模型,图7.2,图7.1,为了把累加数据列还原为原始数列,需进行后减运算 或称相减生成,它是指后前两个数据之差,如上例中,7.2 灰色系统的模型,归纳上面的式子得到如下结果:
8、一次后减,其中,白化定义,7.2 灰色系统的模型,3.精度检验 (1)残差检验:分别计算,7.2 灰色系统的模型,(3)预测精度等级对照表,见表7.1.,7.2 灰色系统的模型,注:由于模型是基于一阶常微分方程建立的,故称为一阶一元灰色模型,记为GM(1,1).须指出的是, 建模时先要作一次累加,因此要求原始数据均为非负数.否则,累加时会正负抵消,达不到使数据序列随时间递增的目的.如果实际问题的原始数据列出现负数,可对原始数据列进行“数据整体提升”处理. 注意到一阶常微分方程是导出GM(1,1)模型的桥梁,在我们应用GM(1,1)模型于实际问题预测时,不必求解一阶常微分方程。,7.2 灰色系统
9、的模型,4.GM(1,1)的建模步骤 综上所述,GM(1,1)的建模步骤如下:,销售额预测,7.3 销售额预测,随着生产的发展、消费的扩大,市场需求通常总是增加的,一个商店、一个地区的销售额常常呈增长趋势. 因此,这些数据符合建立灰色预测模型的要求。,【例7.2】 表7.2列出了某公司19992003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求作精度检验。,7.3 销售额预测,表7.2 逐年销售额(百万元),【例7.2】 表7.2列出了某公司19992003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求作精度检验。,7.3 销售额预测,解(1)由原始数据列
10、计算一次累加序列 ,结果见表7.3. 表7.3 一次累加数据,7.3 销售额预测,(2)建立矩阵:,7.3 销售额预测,7.3 销售额预测,7.3 销售额预测,7.3 销售额预测,7.3 销售额预测,下面我们用用GM预测软件求解例7.2.参考附录B (1)调用GM预测软件.见图7.3.,图7.3,7.3 销售额预测,(2)在“文件”菜单中打开“新建问题”,见到数据输入界面.见图7.4.,7.3 销售额预测,(3)输入题目名称及元素个数后,点击“下一步”键,得到原始数据序列,的输入表格. 见图7.5.,7.3 销售额预测,(4)点击“运行”键,输出分析数据如下: 题目:123 原始数列(5个):
11、 2.874,3.278,3.337,3.39,3.679 预测结果如下: 1dx/dt+ax=u:a=-0.03720438,u=3.06536331 2时间响应方程: X(k+1)=85.2665*exp(0.0372k)-82.3925 3残差E(k): (1) 0.00000000 (2) 0.04596109 (3) -0.01754976 (4) -0.09170440 (5)0.06532115 4第一次累加值: (1) 2.874000 (2) 6.152000 (3) 9.489000 (4) 12.879000 (5)16.558000 5相对残差e(k):(1) 0.00
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 灰色 预测 模型
限制150内