数学必修四知识点归纳.ppt
《数学必修四知识点归纳.ppt》由会员分享,可在线阅读,更多相关《数学必修四知识点归纳.ppt(183页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角函数总复习,任意角的概念,角的度量方法 (角度制与弧度制),弧长公式与 扇形面积公式,任意角的 三角函数,同角公式,诱导公式,两角和与差的三角函数,二倍角的三角函数,三角函数式的恒等变形 (化简、求值、证明),三角函数的 图形和性质,正弦型函数的图象,已知三角函数值,求角,知识网络结构,1.角的概念的推广 (1)正角,负角和零角.用旋转的观点定义角,并规定了旋转的正方向,就出现了正角,负角和零角,这样角的大小就不再限于00到3600的范围.,(3)终边相同的角,具有共同的绐边和终边的角叫终边相同的角,所有与角终边相同的角(包含角在内)的集合为.,(4)角在“到”范围内,指.,(2)象限角和
2、轴线角.象限角的前提是角的顶点与直角坐标系中的坐标原点重合,始边与轴的非负半轴重合,这样当角的终边在第几象限,就说这个角是第几象限的角,若角的终边与坐标轴重合,这个角不属于任一象限,这时也称该角为轴线角.,一、基本概念:,一、任意角的三角函数,1、角的概念的推广,正角,负角,o,x,y,的终边,的终边,零角,二、象限角:,注:如果角的终边在坐标轴上,则该角不是象限角。,三、所有与角 终边相同的角,连同角 在内,构成集合:,(角度制),(弧度制),例1、求在 到 ( )范围内,与下列各角终边相同的角,原点,x轴的非负半轴,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。,1、终边相同
3、的角与相等角的区别,终边相同的角不一定相等,相等的角终边一定相同。,2、象限角、象间角与区间角的区别,3、角的终边落在“射线上”、“直线上”及“互相垂直的两条直线上”的一般表示式,三、终边相同的角,(1)与 角终边相同的角的集合:,1.几类特殊角的表示方法, | =2k+, kZ.,(2)象限角、象限界角(轴线角),象限角,第一象限角:,第二象限角:,第三象限角:,第四象限角:,一、角的基本概念,轴线角,x 轴的非负半轴: =k360(2k)(kZ);,x 轴的非正半轴: =k360+180(2k+)(kZ);,x 轴: =k180(k)(kZ);,典型例题,各个象限的半角范围可以用下图记忆,
4、图中的、分别指第一、二、三、四象限角的半角范围;,例1.若是第三象限的角,问/2是哪个象限的角?2是哪个象限的角?,高考试题精选及分析,C,点评: 本题先由所在象限确定/2所在象限,再/2的余弦符号确定结论.,例1 求经过1小时20分钟时钟的分针所转过的角度:,解:分针所转过的角度,评析: 在解选择题或填空题时, 如求角所在象限,也可以不讨论k的 几种情况,如图所示利用图形来判断.,四、什么是1弧度的角?,长度等于半径长的弧所对的圆心角。,(3)角度与弧度的换算.只要记住,就可以方便地进行换算. 应熟记一些特殊角的度数和弧度数. 在书写时注意不要同时混用角度制和弧度制,(4)弧长公式和扇形面积
5、公式.,度 弧度 0,2、角度与弧度的互化,特殊角的角度数与弧度数的对应表,略解:,例3已知角和满足求角的范围.,解:,例4、 已知扇形的周长为定值100,问扇形的半径和圆心角分别为多少时扇形面积最大?最大值是多少?,扇形面积最大值为625.,例7.已知一扇形中心角是,所在圆的半径是R. 若60,R10cm,求扇形的弧长及该弧所在的弓形面积. 若扇形的周长是一定值C(C0),当为多少弧度时,该扇形的面积有最大值?并求出这一最大值?,指导:扇形的弧长和面积计算公式都有角度制和弧度制两种给出的方式,但其中用弧度制给出的形式不仅易记,而且好用.在使用时,先要将问题中涉及到的角度换算为弧度.,解:(1
6、)设弧长为l,弓形面积为S弓。,正弦线:,余弦线:,正切线:,(2)当角的终边在x轴上时,正弦线,正切线变成一个点;当角的终边在y轴上时,余弦线变成一个点,正切线不存在。,2.正弦线、余弦线、正切线,有向线段MP,有向线段OM,有向线段AT,注意: (1)圆心在原点,半径为单位长的圆叫单位圆.在平面直角坐标系中引进正弦线、余弦线和正切线,三角函数,三角函数线,正弦函数 余弦函数 正切函数,正弦线MP,正弦、余弦函数的图象,P,M,A(1,0),T,sin=MP,cos=OM,tan=AT,注意:三角函数线是有向线段!,余弦线OM,正切线AT,P,O,M,P,O,M,P,O,M,P,O,M,MP
7、为角的正弦线,OM为角的余弦线,10)函数y=lg sinx+ 的定义域是(A) (A)x|2kx2k+ (kZ) (B)x|2kx2k+ (kZ) (C)x|2kx2k+ (kZ) (D)x|2kx2k+ (kZ),专题知识,三角函数线的应用,一、三角式的证明,2、已知:角 为锐角, 试证:,1、已知:角 为锐角, 试证:(1),4、在半径为r的圆中,扇形的周长等于半圆的弧长,那么扇形圆心角是多少?扇形的的面积是多少?,答:圆心角为-2,面积是,5、用单位圆证明sian tan.(00 900,A,T,P,M,提示:利用三角函数线和三角形面积与扇形面积大小关系证明。,例5 已知角的终边经过点
8、,例6 若为第一象限角,利用三角函数线证明:,若为其它象限角呢?,例7 求函数 的定义域.,4.三角函数的符号,一、任意角的三角函数定义,x,y,o,P(x,y),r,二、同角三角函数的基本关系式,倒数关系:,商关系:,平方关系:,三角函数值的符号:“第一象限全为正,二正三切四余弦”,平方关系,倒数关系,商式关系,5.同角三角函数基本关系:,神奇的六边形,(1)上述几个基本关系中,必须注意:它们都是同一个角的三角函数,因此sin2+sin2 =1不一定成立;这几个恒等式都是在所取的角使等式两边都有意义的前提下成立. (2)同角三角函数的基本关系常用于:已知角的某个三角函数值,求角的其他三角函数
9、值;化简三角函数式;证明三角恒等式,同角三角函数基本关系注意事项:,三、典型例题分析,【解题回顾】已知三角函数值求同角的其它三角函数值是一个基本题型,解答此问题过程中,通过基本关系式中正弦、余弦、正切之间的联系,必需开方且只需开方一次(有的题型根据已知条件可以尽量回避开方,使得问题轻松获解 ),根据角所在象限,确定正负号的取舍.当给出的的象限指定唯一,则此时一般有一解;当角的象限没有定,可根据已知的函数值的符号确定的象限,此时一般有二解(除轴上角外);当已知的三角函数值符号不确定,此时一般有四解(除轴上角.外).,例1:已知 是第三象限角,且 ,0求 。,四、主要题型,解:,应用:三角函数值的
10、符号;同角三角函数的关系;,例2已知sin=m (|m|1) ,求tan.,方法指导:此类例题的结果可分为以下三种情况. (1)已知一个角的某三角函数值,又知角所在象限,有一解. (2)已知一个角的某三角函数值,且不知角所在象限,有两解. (3)已知角的三角函数值是用字母表示时,要分象限讨论.分象限讨论的依据是已知三角函数值具有平方关系的那个三角函数值符号,一般有四解.,指导:容易出错的地方是得到x23后,不考虑P点所在的象限,分x取值的正负两种情况去讨论,一般地,在解此类问题时,可以优先注意角所在的象限,对最终结果作一个合理性的预测,例4设为第四象限角,其终边上的一个点是 P(x, ),且c
11、os ,求sin和tan.,设00900,对于任意一个00到3600的角,=,, 当00,900,1800-, 当900,1800,1800+,当1800,2700,3600-,当2700,3600,如何求非锐角的三角函数值呢?,角1800-, 1800+, 3600-的三角函数值与 的三角函数值有何关系呢?,6.诱导公式:,公式5:,奇变偶不变,符号看象限!,(注意:把 看作是锐角),公式五:,公式六:,偶同奇余,象限定号,(K是奇数),(K是偶数),(K是奇数),(K是偶数),诱导公式总结:,口诀:奇变偶不变,符号看象限,意义:,利用诱导公式把任意角的三角函数转化为锐角三角 函数,一般按下
12、面步骤进行:,任意负角的 三角函数,任意正角的 三角函数,锐角三 角函数,到 的角 的三角函数,特殊角的三角函数值,你记住了吗?,三、典型例题分析,【解题回顾】视sin,cos 等为“一次式”,sin2 ,sin cos 等为“二次式”. 象此题中的“分式齐次式”、“齐次二项式”是典型的条件求值,一般化为含tan 的式子.要注重数字“1”的代换,表面上看增加了运算,但同时它又可以将原表达式整体结构发生改变,给解决问题带来方面,故解题时,应给于足够的认识,1、,若 ,则,分析: 从已知 可求出,同除以 得,例1:,原式可化为,(04 湖南),例5,若tanA=,求2sin2A+sinAcosA-
13、3cos2A 的值。,指导:这是一个已知角A的三角函数值,求它的三角函数式的值。观察其构成特征,可考虑利用“1”的恒等变形,把欲求值的三角函数式用条件正切来表示。即先变形,后代入计算。,解:,例5,若tanA=,求2sin2A+sinAcosA-3cos2A 的值。,分析:,属“给值求值”型,本例若借助题目条件的特殊性来整体考虑使用条件应比较简单些。,齐,例题与练习,例4 化简,练习1 求sin(2n+2/3)cos(n+4/3)的值(nZ),2 化简 cos(4n+1)/4+x+ cos(4n-1)/4-x,当n为奇数时,原式=-2cos(/4+x) 当n为偶数时,原式=2cos(/4+x)
14、,当n为偶数时,,当n为奇数时,,补充: 已知 (1)试判断 的符号; (2)化简,作业,解:由,的终边在第二、三象限或y轴和x轴的负半轴上;,又 , 角的终边在第二、四象限, 从而 的终边在第二象限。,(1)易知,(2)原式=,【解题回顾】 证等式常用方法: (1)左边证明到右边或右边证明到左边(从繁到简为原则) (2)两边向中间证 (3)分析法; (4)用综合法 证等式的思路要灵活,根据等式两边式子结构特点,寻求思路.,三、典型例题分析,三、典型例题分析,【解题回顾】根据目标式子无的特点, 采用消元思想, 三角平方关系式消元是一重要方法.,四、sincos, sincos ,sincos
15、三个式子中,已知其中一个式子的值,可以求出其余两个式子的值。,例2、:已知,三、典型例题分析,求 的值.,【解题回顾】sin与cos通过公式 sin2+cos2=1形成对立与统一的整体,它们的和sin+cos、差sin-cos、积sincos、商sin/cos(即tan)密切相联,如(sin+cos)2=1+2 sincos,,例6,若 , 则 。,指导:条件是正余弦的乘积,结论要求的是差,要想联系起来只有平方,需注意的是 ( , ) 即,小结:解决“给值求角”型问题,关键是利用给定的三角函数值或者首先求出该角的某一个三角函数值,在某个范围内求出具体的角。,练习:,例3 已知是三角形的内角,且
16、sin+cos= ,求tan的值。,解答下列问题: (1)若 在第四象限,判断 的符号; (2)若 ,试指出 所在的象限, 并用图形表示出的取值范围.,思考题,三、三角函数图像和性质,R,R,-1,1,-1,1,R,奇,奇,偶,无最值,无,2,2,定义域,值域,奇偶性,单调性,周期性,对称性,R,R,R,-1,1,-1,1,奇函数,奇函数,偶函数,增区间:,增区间:,增区间:,减区间:,减区间:,对称中心:,对称中心:,对称中心:,对称轴:,对称轴:,3、正切函数的图象与性质,y=tanx,图 象,x,y,o,定义域,值域,R,奇偶性,奇函数,周期性,单调性,正切函数的性质:,6、对称性:对称
17、中心,7、渐进线:,四、三角函数的图象和性质,图象,y=sinx,y=cosx,x,o,y,-1,1,x,y,-1,1,性 质,定义域,R,R,值 域,-1,1,-1,1,周期性,T=2,T=2,奇偶性,奇函数,偶函数,单调性,o,1、正弦、余弦函数的图象与性质,五点作图法,p,对称点:(kp,0),对称轴:x=kp,kZ,kZ,练习:,y=3sin(2x+)的图像的一条对称轴方程是( ),(A)x=0 (B)x= (C)x=- (D)x= 3,B,解:,令X= 2x+,则y=3sinX,由此可知y=3sinX的图像的对称轴方程为k + /2 ,k Z, 2x+k + /2 ,k Z,解得x=
18、k /2+ , k Z,y=3sin(2x+)的图像的对称轴方程为: x=k /2+ , k Z,令k=0得x= ,1、作y=Asin(x+)图象的方法,2、y=Asin(x+)关于 A、的三种变换,法一:五点法,列表取值方法:是先对x+取 0,/2,3/2,2,法二:图象变换法,(1)振幅变换(对A),(2)周期变换(对),(3)相位变换(对),(二) y=Asin(x+)的相关问题,3、求y=Asin(x+)+K 的解析式的方法,4、y=Asin(x+)(A0,0) 的图象的对称中心和对称轴方程,2、函数 的图象(A0, 0 ),第一种变换:,图象向左( ) 或 向右( ) 平移 个单位,
19、横坐标伸长( )或缩短( )到原来的 倍 纵坐标不变,纵坐标伸长(A1 )或缩短( 0A1 )到原来的A倍 横坐标不变,第二种变换:,横坐标伸长( )或缩短( )到原来的 倍 纵坐标不变,图象向左( ) 或 向右( ) 平移 个单位,纵坐标伸长(A1 )或缩短( 0A1 )到原来的A倍 横坐标不变,5、对于较复杂的解析式,先将其化为此形式: 并会求相应的定义域、值域、周期、单调区间、对称中心、对称轴;会判断奇偶性,例3、不通过求值,比较tan1350与tan1380的大小。,解:900135013802700,又 y=tanx在x(900,2700)上是增函数, tan1350tan1380
20、。,例3 求函数 的定义域值域,解 ,2、函数 单调递增 区间是,变题:函数 单调递减 区间是,例4 函数y=cos(2x+ )图象的一条对称轴方程为_。 (A) x=- (B) x=- (C) x= (D) x= 解:2x+ =k 2x=k - x= - k=0 x=- 选B 例5 函数y=sin(x+)(0,| )的图象向左平移 个单位,再将图象上所有点的横坐标扩大到原来2倍(纵坐标不变)得函数y=sinx图象则=_ =_。 解:y=sin2x =sin2(x- )=sin(2x- ) =2 =-,思路:函数y=sin2x+acos2x可化为,要使它的图象关于直线x= -/8对称,则图象在
21、该处必是处于波峰或波谷.即函数在x=-/8时取得最大、小值.,例9、(98年)关于函数 有下列命题: 的表达式可改写为 是以 为最小正周期的周期函数 的图象关于点 对称 的图象关于直线 对称 其中正确的命题序号是。, ,(3)连线:,用“五点作图法”作出 y=A sin (x + ) 在长度为一个周期闭区间上的图象,(2) 描点:,(1)列表:,(1)由最大值点(或最小值点)定A (2)由两个关键点(特殊点)定 和 ,总 结,给出函数 y=Asin(x+) (A0 , 0)的图象求其解析式的一般方法:,6、已知下图是函数 的图象 (1)求 的值; (2)求函数图象的对称轴方程.,(2)函数图象
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 知识点 归纳
限制150内