近三年高考全卷理科立体几何真题(9页).doc
《近三年高考全卷理科立体几何真题(9页).doc》由会员分享,可在线阅读,更多相关《近三年高考全卷理科立体几何真题(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-近三年高考全卷理科立体几何真题-第 9 页 新课标卷近三年高考题1、(2016年全国I高考)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,且二面角DAFE与二面角CBEF都是(I)证明:平面ABEF平面EFDC;(II)求二面角EBCA的余弦值【解析】为正方形 面 面平面平面由知平面平面平面平面面面四边形为等腰梯形以为原点,如图建立坐标系,设设面法向量为.,即设面法向量为.即 设二面角的大小为.二面角的余弦值为2、(2016年全国II高考)如图,菱形的对角线与交于点,点分别在上,交于点将沿折到位置,()证明:平面;()求二面角的正弦值【解析】证明:,四边
2、形为菱形,又,又,面建立如图坐标系设面法向量,由得,取,同理可得面的法向量,3、(2016年全国III高考)如图,四棱锥中,地面,为线段上一点,为的中点(I)证明平面;(II)求直线与平面所成角的正弦值.设为平面的法向量,则,即,可取,于是.4、【2015高考新课标2,理19】如图,长方体中,,点,分别在,上,过点,的平面与此长方体的面相交,交线围成一个正方形DD1C1A1EFABCB1()在图中画出这个正方形(不必说出画法和理由);()求直线与平面所成角的正弦值【答案】()详见解析;()【考点定位】1、直线和平面平行的性质;2、直线和平面所成的角【名师点睛】根据线面平行和面面平行的性质画平面
3、与长方体的面的交线;由交线的位置可确定公共点的位置,坐标法是求解空间角问题时常用的方法,但因其计算量大的特点很容易出错,故坐标系的选择是很重要的,便于用坐标表示相关点,先求出面的法向量,利用求直线与平面所成角的正弦值5、 【2015高考新课标1,理18】如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.()证明:平面AEC平面AFC;()求直线AE与直线CF所成角的余弦值.【答案】()见解析()又AEEC,EG=,EGAC,在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三年 高考 理科 立体几何
限制150内