遥感数字图像处理期末考试整理(16页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《遥感数字图像处理期末考试整理(16页).doc》由会员分享,可在线阅读,更多相关《遥感数字图像处理期末考试整理(16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-遥感数字图像处理期末考试整理-第 16 页 遥感数字图像处理复习资料整理直方图: 直方图是灰度级的函数,描述的是图像中各个灰度级像素的个数。对于数字图像来说,直方图实际就是灰度值概率密度函数的离散化图形。1. 窗口: 对于图像中的任一像素(x, y),以它为中心,按上下左右对称原则所设定的像素范围,称为窗口2. 滤波: 滤波是把某种信号处理成为另一种信号的过程。滤波的概念主要用于频率域图像处理中,在空间域,滤波即为卷积运算3. 纹理: 通常认为,纹理是由纹理基元按某种确定性的规律或只是按某种统计规律重复排列组成的。遥感图像怎么数字表示?表示图像的基本方法有两类,即确定的与统计的。确定的表示法
2、是写出图像函数表达式,对于数字图像,则表示成矩阵或向量形式。统计的表示法则是用一种平均特征来表示图像。1. 图像的统计特征有什么作用?对于单波段图像而言,统计特征反映像素值平均信息,反映像素值变化信息。遥感图像处理往往是多波段数据的处理,处理中不仅要考虑单个波段图像的统计特征,也要考虑波段间存在的关联,多波段图像之间的统计特征不仅是图像分析的重要参数,而且也是图像合成方案的主要依据之一。2. 图像直方图有怎样的性质?直方图反映了图像中的灰度分布规律;任何一幅特定的图像都有唯一的直方图与之对应,但不同的图像可以有相同的直方图;如果一幅图像仅包括两个不相连的区域,并且每个区域的直方图已知,则整幅图
3、像的直方图是这两个区域的直方图之和;由于遥感图像数据的随机性,一般情况下,遥感图像数据与自然界的其它现象一样,服从或接近于正态分布。3. 如何根据图像直方图判断图像质量?根据直方图的形态可以大致推断图像的反差,然后可通过有目的地改变直方图形态来改善图像的对比度。一般来说,如果图像的直方图形态接近正态分布,则这样的图像反差适中;如果直方图峰值位置偏向灰度值大的一边,图像偏亮;如果峰值位置偏向灰度值小的一边,图像偏暗;峰值变化过陡、过窄,则说明图像的灰度值过于集中,反差小。4. 窗口和邻域有什么区别?对于图像中的任一像素(x,y),以此为中心,按上下左右对称所设定的像素范围,称为窗口。窗口多为矩形
4、,行列数为奇数,并按照行数x列数的方式来命名。例如,3x3窗口,5x5窗口等。3x3表示由3行和3列像素构成的矩形范围。中心像素周围的行列称为该像素的邻域。邻域按照与中心像素相邻的行列总数来命名。例如,对于3x3窗口而言,如果考虑中心像素周围的所有像素,那么相邻的总的行列数为8,称为8邻域。如果认为上下左右的像素是相邻像素,那么总的行列数为4,则称为4邻域。5. 什么是卷积运算?卷积是空间域上针对特定窗口进行的运算,是图像平滑、锐化中使用的基本的计算方法。设窗口大小为mn,(i,j)是中心像素,f(x,y)是图像像素值,g(i,j)是运算结果,是窗口模板(或称为卷积核,kernel),那么,卷
5、积计算的公式为:对于整个图像,从左上角开始,由左到右、由上到下按照窗口大小顺序进行遍历,即可完成整个图像的卷积计算。对于图像边缘,由于无法满足窗口对中心像素的要求,其窗口外部的像素值可以用如下任意一种方法来处理:1)设为0值;2)按对称原则从图像中取值;3)保留原值,不进行计算。6. 什么是滤波?狭义地说,滤波是指改变信号中各个频率分量的相对大小、或者分离出来加以抑制、甚至全部滤除某些频率分量的过程。广义地说,滤波是把某种信号处理成为另一种信号的过程。从计算上来看,滤波是频率函数 与信号的频谱之间的相乘计算7. 什么是纹理?包括哪些基本类型?名词解释1. 灰色梯尺: 黑白系列的非彩色可以用一条
6、灰色色带表示,一端是纯黑色,另一端是纯白色,称为灰色梯尺2. 伪彩色合成: 伪彩色合成是把单波段灰度图像中的不同灰度级按特定的函数关系变换成彩色,然后进行彩色图像显示的方法,主要通过密度分割方法来实现3. 真彩色合成: 如果彩色合成中选择的波段的波长与红绿蓝的波长相同或近似,那么得到的图像的颜色与真彩色近似,这种合成方式称为真彩色合成4. 密度分割法:密度分割法是针对单波段遥感图像按灰度分级,对每级赋予不同的色彩,使之变成一副彩色图像5. 直方图均衡化:对原始图像的像素灰度作某种映射变换,使变换后图像灰度的概率密度呈均匀分布,即变换后图像的灰度级均匀分布二、简答1. 图像增强的意义?用来改善图
7、像的对比度,突出感兴趣的地物信息,提高图像的目视解释效果。从一般意义上看,图像增强是使得图像看起来更好的图像处理方法常用的颜色模型有哪些,各有什么特点?1)RGB模型,这种模型用在彩色监视器和彩色摄像机等领域,当彩色图像中的部分地物隐藏在阴影中时不适用;2)CMY模型,用在彩色打印机上;3)YIQ模型,用于彩色电视广播。其中,Y相当于亮度,而I和Q是被称为正交的两个颜色分量。主要优点是去掉了亮度(Y)和颜色信息(I和Q)间的紧密联系。4)HIS模型,用于图像的显示和处理,其中I是强度。强度成份()在图像中与颜色信息无关;色调和饱和度成份与人们获得颜色的方式密切相关。这些特征使HIS模型成为一个
8、理想的研究图像处理运算法则的工具,是面向彩色图像处理的最常用的颜色模型。2. 为什么要进行彩色合成?有哪些主要的合成方法? 人眼对黑白密度的分辨能力有限,大致只有10个灰度级,而对彩色图像的分辨能力则要高得多。如果以平均分辨率的 计算,人眼可察觉出数百种颜色差别。这还仅仅是色调一个要素,如果加上颜色的其他两个要素:饱和度和亮度,人眼能够辨别彩色差异的级数要远远大于黑白差异的级数。为了充分利用色彩在遥感图像判读中的优势,常常首先对多波段图像进行彩色合成得到彩色图像,然后再进行其他的处理。彩色合成包括伪彩色合成、真彩色合成、假彩色合成和模拟真彩色合成四种方法3. 假彩色合成与伪彩色合成的差异是什么
9、?伪彩色合成是将单波段灰度图像转变为彩色图像的方法,假彩色合成与伪彩色不同之处在于,假彩色合成使用的数据是多个波段4. 怎么用SPOT的多光谱数据来模拟真彩色图像的显示? 色用XS2表示,绿色用(XS1+ XS2+ XS3)/3的波段运算来实现,蓝色采用XS1波段代替。该方法实际上是将原来的绿波段(0.50-0.59 m)当作蓝波段(该波段靠近蓝波段的光谱范围),红波段(0.61-0.68 m)仍采用原来的波段,绿波段用绿波段、红波段、红外波段的算术平均值来代替。5. 图像拉伸有哪些方法,优点是什么? 包括灰度拉伸、图像均衡化、直方图规定化。 拉伸是最基本的图像处理方法,主要用来改善图像显示的
10、对比度。如果对比度比较低,那么就无法清楚的表现出图像中地物之间的差异,因此,往往需要在显示的时候进行拉伸处理。拉伸按照波段进行,它通过处理波段中单个像素值来实现增强的效果。6. 多波段图像线性拉伸的步骤是什么?设定增强后图像范围;计算线性拉伸公式;对各个波段进行线性拉伸;进行彩色合成7. 对一个波段的图像进行直方图均衡化的具体步骤是什么?(1)统计原图像每一灰度级的像素数和累积像素数。(2)计算每一灰度级xa均衡化后对应的新值,并对其四舍五入取整,得到新灰度级xb。(3)以新值替代原灰度值,形成均衡化后的新图像。 (4)根据原图像像素统计值对应找到新图像像素统计值,作出新直方图名词解释、几何精
11、纠正:几何精纠正又称为几何配准(registration),是把不同传感器具有几何精度的图像、地图或数据集中的相同地物元素精确地彼此匹配、叠加在一起的过程二、简答1. 辐射校正的目的是什么?辐射校正的目的是:尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声引起的传感器的测量值与目标的光谱反射率或光谱辐亮度等物理量之间的差异,尽可能恢复图像的本来面目,为遥感图像的分割、分类、解译等后续工作打下基础。2. 遥感图像几何精纠正的目的和原理是什么?几何精纠正又称为几何配准(registration),是把不同传感器具有几何精度的图像、地图或数据集中的相同地物元素精确地
12、彼此匹配、叠加在一起的过程。遥感图像的几何精纠正解决遥感图像与地图投影的匹配问题,其重要性主要体现在以下三个方面:第一,只有在进行纠正后,才能对图像信息进行各种分析,制作满足量测和定位要求的各类遥感专题图;第二,在同一地域,应用不同传感器、不同光谱范围以及不同成像时间的各种图像数据进行计算机自动分类、地物特征的变化监测或其它应用处理时,必须进行图像间的空间配准,保证不同图像间的几何一致性;第三,利用遥感图像进行地形图测图或更新要求遥感图像具有较高的地理坐标精度。几何精纠正的基本原理是回避成像的空间几何过程,直接利用地面控制点数据对遥感图像的几何畸变本身进行数学模拟,并且认为遥感图像的总体畸变可
13、以看作是挤压、扭曲、缩放、偏移以及更高次的基本变形的综合作用的结果。因此,校正前后图像相应点的坐标关系可以用一个适当的数学模型来表示。3. 什么是图像的重采样?常用的重采样方法有哪些?各有什么特点?待纠正的数字图像本身属于规则的离散采样,非采样点上的灰度值需要通过采样点(已知像素)内插来获取,即重采样。常用的重采样方法有最近邻方法、双线性内插方法和三次卷积内插方法。最近邻重采样算法简单,最大的优点是保持像素值不变。但是,纠正后的图像可能具有不连续性,会影响制图效果。当相邻像素的灰度值差异较大时,可能会产生较大的误差。双线性内插方法简单且具有一定的精度,一般能得到满意的插值效果。缺点是方法具有低
14、通滤波的性质,会损失图像中的一些边缘或线性信息,导致图像模糊。三次卷积内插方法产生的图像比较平滑,缺点是计算量很大4. 怎么进行多源图像的几何配准? 多图像几何配准就是指将多图像的同名图像通过几何变换实现重叠,通常称作相对配准;将相对配准后的多图像纳入某一地图坐标系统,称作绝对配准。多项式和共线方程都可以实现多图像的几何配准。例如,采用多项式纠正法,一旦在多图像上选择分布均匀、足够数量的一些同名图像作为相互匹配的控制点,就可根据控制点计算多项式系数,实现一幅图像对另一幅图像的几何纠正,从而达到多图像的几何配准。但在许多情况下,很难找到准确可靠的控制点,所以多图像的几何配准,通常都采用相关函数进
15、行自动配准。多图像自动配准的基本假设是相同的地物具有相似的光谱特征。通过对两个图像作相对移动,找出其相似性量度值最大、或差别最小的位置作为图像配准的位置。名词解释1. 傅立叶变换:指非周期函数的正弦和或余弦乘以加权函数的积分表示2. 主成分变换:是基于变量之间的相关关系,在尽量不丢失信息前提下的一种线性变换的方法,主要用于数据压缩和信息增强。在遥感软件中,主成分变换常被称为KL变换。二、 简答1. 傅立叶变换的基本性质有哪些?1)对称性:函数的偶函数分量将对应于傅立叶变换后的偶函数分量,奇函数分量也对应于奇函数分量,但是要引入系数j。(2)加法定理:时域中的加法对应于频域内的加法。(3)位移定
16、理:函数位移的变化不会改变其傅立叶变换的幅值,但会产生一个相位变化。(4)相似性定理:“窄”函数对应于一个“宽”傅立叶变换,“宽”函数对应于一个“窄”傅立叶变换(所谓的宽、窄是指函数在坐标轴方向上的延伸情况)。(5)卷积定理:时间域中的函数卷积对应于频域中的函数乘积;或者说,两个函数卷积的傅立叶变换等于它们各自傅立叶变换的乘积。如果函数是在有限维空间中定义的图像,只有假设每个图像在各个方向上都有周期性的重复,卷积定理才成立。(6)共轭性:将函数的傅立叶变换的共轭输入傅立叶变换程序得到该函数的共轭,也就是说,完全可以利用傅立叶变换程序计算傅立叶逆变换而无须重新编写逆变换程序。(7)Rayleig
17、h定理:傅立叶变换前、后的函数具有相同的能量。2. 傅立叶变换的基本工作流程是什么? 傅里叶比变换的工作流程是:(1)正向FFT: 指定图像的一个波段,按照计算公式进行FFT,产生频率域图像。(2)定义滤波器: 以频率域图像为参照,定义滤波器。常用的滤波器有低通、高通、带通、带阻、用户定义几种。波段不同,频率域图像不同,需要定义不同的滤波器。(3)逆向FFT:将定义的滤波器应用到频率域图像,得到空间域的图像,进行显示3. 主成分变换算法的性质有哪些?工作流程是什么?怎么确定主成分的个数,怎么解释主成分? 主成分变换的基本性质有:(1)总方差的不变性。变换前后总方差保持不变,变换只是把原有的方差
18、在新的主成分上重新进行分配。(2)正交性。变换后得到的主成分之间不相关。(3)从主成分向量中删除后面的(n-p)个成分只保留前p(pn)个成分时所产生的误差满足平方误差最小的准则。换句话说,前面的p个主成分包含了总方差的大部分。主成分变换的流程为:主成分正变换主成分逆变换。(1)一般意义上的主成分变换指正变换。该过程通过对图像进行统计分析,在波段协方差矩阵或相关矩阵的基础上计算特征值,构造主成分。根据主成分特征值的关系,可以选择少数的主成分作为输出结果。(2)如果在正变换中选择的主成分数目与波段/变量数目相同,那么逆变换的结果将完全等同于原始的图像。如果选择的主成分数目少于波段数,逆变换的结果
19、相当于压抑了图像中的噪音,但此时逆变换结果图像的各个“波段”与原始图像的波段不再具有对应性,不再具有原始图像波段的物理意义。名词解释1. 模板:图像滤波不仅考虑当前像素的值,而且还考虑了当前像素与相邻域像素之间的关系。与当前像素相邻的像素为邻域像素,通过指定窗口的大小确定邻域的范围。相邻像素对当前像素的影响表现为权重矩阵(也称为模板或卷积核)2. 图像平滑:图像在获取和传输的过程中,受传感器和大气等因素的影响会存在噪声。在图像上,这些噪声表现为一些亮点、或亮度过大的区域。为了抑制噪声、改善图像质量所做的处理称为图像平滑。3. 椒盐噪声:椒盐噪声又称脉冲噪声,它随机改变一些像素值,在二值图像上表
20、现为使一些像素点变白(用b表示),一些像素点变黑(用a表示)。4. 中值滤波:、值作为中心像素的新值。窗口的行列数一般取奇数。由于用中值替代了平均值,中值滤波在抑制噪声的同时能够有效地保留边缘,减少模糊。5. 同态滤波:同态滤波是减少低频增加高频,从而减少光照变化并锐化边缘或细节的图像滤波方法二、简答题(10)1. 图像滤波的主要目的是什么?主要方法有哪些?2. 图像噪声有哪些主要类型,主要特点是什么?3. 如何理解中值滤波的不变性?4. 什么是梯度倒数加权法平滑?5. 什么是Laplacian算子?它有哪些特征?6. 罗伯特梯度与Sobel梯度有什么区别?7. 根据像素的梯度值生成不同的梯度
21、图像的方法有哪些?8. 定向检测的模板有哪些?9. 频率域滤波的主要滤波器有哪些?各有什么特点?10. 同态滤波的基本操作有哪些?二、简答题(10)1. 图像滤波可以从图像中提取空间尺度信息,突出图像的空间信息,压抑其它无关的信息,或者去除图像的某些信息,恢复其它的信息。因此,图像滤波也是一种图像增强方法。图像滤波可分为空间域滤波和频率域滤波两种方法。空间域滤波通过窗口或卷积核进行,它参照相邻像素来单个像素的灰度值,这是当前主要的滤波方法。频率域滤波是对图像进行傅立叶变换,然后对变换后的频率域图像中的频谱进行滤波。2. 图像噪声按其产生的原因可分为外部噪声和内部噪声。外部噪声是指图像处理系统外
22、部产生的噪声,如天体放电干扰、电磁波从电源线窜入系统等产生的噪声。内部噪声是指系统内部产生的噪声。从统计理论观点可分为平稳和非平稳噪声。凡是统计特征不随时间变化的噪声称为平稳噪声;统计特征随时间变化的噪声称为非平稳噪声。从噪声幅度分布形态可分为高斯型、瑞利型噪声。还有按频谱分布形状进行分类的,如均匀分布的噪声称为白噪声。按产生过程进行分类噪声可分为量化噪声和椒盐噪声等。3. 对于一维的某些特定的输入信号,中值滤波的输出保持输入信号值不变。例如输入信号为在2n+1内单调增加或单调减少的序列。对于二维信号,中值滤波不变性要复杂得多,不仅与输入信号有关,还与窗口的形状有关。图 7.7列出了几种二维中
23、值滤波窗口及与之对应的最小尺寸的不变输入图形。一般地,与窗口对角线垂直的边缘经滤波后将保持不变。利用这个特点,可以使中值滤波既能去除图像中的噪声,又能保持图像中一些边缘信息。从经验来看,方形或圆形的窗口适宜于地物轮廓较长的图像,十字窗口适宜于有尖角物体的图像。一维的周期性二值序列,如xn=,+1,+1,-1,-1,+1,+1,-1,-1,当滤波窗口长度为9时,经过中值滤波此序列将保持不变。对于一个二维序列,这一类不变性更为复杂,但它们一般也是二值的周期性结构,即周期性网格结构的图像。4. 梯度倒数加权法平滑源于这样的考虑:在离散图像内部相邻区域的变化大于区域内部的变化,在同一区域中中间像素的变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 遥感 数字图像 处理 期末考试 整理 16
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内