《统计学期末复习题库(27页).doc》由会员分享,可在线阅读,更多相关《统计学期末复习题库(27页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-统计学期末复习题库-第 27 页综合练习题(第1章)一、填空题1.统计学是一门 收集、整理、显示和分析统计数据的科学。2.统计学是一门收集、整理、显示和分析统计数据的科学,其目的是探索数据内在的 数量规律性。3.描述统计是用 图形、表格和概括性的数字对数据进行描述的统计方法。4.推断统计是根据 样本信息对总体进行估计、假设检验、预测或其他推断的统计方法。5.从统计方法的构成来看,统计学可以分成描述统计学、推断统计学。6.抽样调查中误差的来源有 抽样误差和非抽样误差两类。7.统计调查的方法主要有抽样调查、普查。8.描述统计是整个统计学的基础和统计研究工作的第一步;推断统计是现代统计学的核心和统
2、计研究工作的关键环节。二、单项选择题1.为了估计全国高中学生的平均身高,从20个城市选取了100所中学进行调查。在该项研究中,研究者感兴趣的变量是( B )A. 100所中学的学生数 B. 全国高中学生的身高C. 20个城市的中学数 D. 全国的高中学生数2.为了估计全国高中学生的平均身高,从20个城市选取了100所中学进行调查。在该项研究中,研究者感兴趣的总体是( C )A. 100所中学 B. 20个城市C. 全国的高中学生 D. 100所中学的高中学生3.最近发表的一份报告称,由“150部新车组成的一个样本表明,外国新车的价格明显高于本国生产的新车”。这是一个( C )的例子A. 随机样
3、本B. 描述统计C. 统计推断D. 总体4.政治算术一书的作者是( A)。A.威廉配第 B.约翰格朗特 C.海尔门康令 D.亚道尔夫凯特勒5.关于死亡表的自然观察和政治观察一书的作者是( B)。A.威廉配第 B.约翰格朗特 C.海尔门康令 D.亚道尔夫凯特勒三、名词解释1、统计学:是运用数理统计的基本原理和方法研究预防医学和卫生事业管理中资料的收集,整理和分析的一门应用科学。具体地讲,是按照设计方案去收集、整理、分析数据,并对数据结果进行解释,从而做出比较正确的结论。2、描述统计:用统计图表或计算统计指标的方法表达一个特定群体的某种现象或特征。3、推断统计:根据样本资料的特性对总体的特性作估计
4、或推论的方法称统计推断,常用方法是参数估计和假设检验。4.抽样误差:抽样误差是利用样本推断总体时产生的误差。四、简答题1.简述总体与样本的关系。答:样本是总体的一部分单位。2.什么是抽样误差?其特点是什么?答:抽样误差是利用样本推断总体时产生的误差。 特点:对任何一个随机样本来讲都是不可避免的;是可以计量的,并且是可以控制的; 样本的容量越大,抽样误差就越小; 总体的变异性越大,抽样误差也就越大。3.试比较普查与抽样调查的优缺点普查时为某一特定目的,专门组织的一次全面调查。优点:摸清基本情况,获得丰富的统计数据;缺点:要花费较大的时间,人力,物力和财力。抽样调查是通过随机样本对总体数量的规律性
5、进行推断的调查研究方法。优点:节省人力,物力和财力,保证时效性;缺点:不可避免地存在着由样本推断总体的产生的抽样误差综合练习题(第2章)一、填空题1.统计表和统计图是显示统计资料的两种主要方式。2.美国10家公司在电视广告上的花费如下(百万美元):72,63.1,54.7,54.3,29,26.9,25,23.9,23,20。样本数据的中位数为27.953.分组的目的是找出数据分布的数量规律性,因此在一般情况下,组数不应少于5组,也不应多于15组。4.现有数据3,3,1,5,13,12,11,9,7。它们的中位数是7。5.众数、中位数和均值中,不受极端值影响的是众数、中位数。6.众数和中位数是
6、从数据分布形状及位置角度来考虑的集中趋势代表值,而均值是经过对所有数据计算后得到的集中趋势值。7.下列数据是某班的统计学考试成绩:72,90,91,84,85,57,90,84,77,84,69,77,66,87,55,95,86,78,86,85,87,92,73,82。这些成绩的极差是40。8.在统计学考试中,男生的平均成绩为75分,女生的平均成绩为80分,如果女生人数占全班人数的2/3,则全班统计学平均成绩为78.3。9.变异系数为0.4,均值为20,则标准差为8。10.分组数据中各组的值都减少1/2,每组的次数都增加1倍,则加权算术平均数将 减少1/2。11.已知某村2005年人均收入
7、为2600元,收入的离散系数为0.3,则该村村民平均收入差距(标准差)为780。12.根据下列样本数据3,5,12,10,8,22计算的标准差为(保留3位有效数字)6.72。二、单项选择题1.1990年发表的一篇文章讨论了男性和女性MBA毕业生起薪的差别。文章称,从前20名商学院毕业的女性MBA的平均起薪是54749美元,中位数是47543美元,标准差是10250美元。根据这些可以判断,女性MBA起薪的分布形状是( B)A. 尖峰,对称B. 右偏C. 左偏D. 均匀2.在某公司进行的计算机水平测试中,新员工的平均得分是80分,标准差是5分,中位数是86分,则新员工得分的分布形状是( B)A.
8、对称的 B. 左偏的 C. 右偏的 D. 无法确定3.加权算术平均数的大小( C )A.主要受各组标志值大小的影响,而与各组次数的多少无关。B.主要受各组次数多少的影响,而与各组标志值的大小无关C.既受各组标志值大小的影响,也受各组次数多少的影响D.既不受各组标志值大小的影响,也不受各组次数多少的影响4.在对几组数据的离散程度进行比较时使用的统计量通常是( C )A. 极差 B. 平均差 C. 离散系数 D. 标准差5.计算标准差时,如果从每个数据中都减去10,则计算结果与原来的标准差相比( B )A.变大10 B. 不变 C.变小10 D.数据不全,无法计算6.若基尼系数为0,表示收入分配(
9、 B)。A. 比较平均 B. 绝对平均 C. 绝对不平均 D. 无法确定7.在比较两组数据的离散程度时,不能直接比较它们的方差,因为两组数据的( D )。A.标准差不同 B.方差不同 C.数据个数不同 D.均值不同8.用未分组资料计算算术平均数与先分组再计算算术平均数相比,二者结果( C )A相同B不相同 C可能相同,也可能不同 D组距数列下相同9.假定某组距数列的第一组为:60以下,其相邻组为6070,则第一组的组中值等于(D)A.65B.35C.45D.5510.均值为20,变异系数为0.4,则标准差为( B )A.50B.8C.0.02D.411.对于右偏分布,均值、中位数和众数之间的关
10、系是(A)A. 均值中位数众数 B. 中位数均值众数 C. 众数中位数均值 D. 众数均值中位数12.直方图一般可用于表示(A)A. 次数分布的特征 B. 累积次数的分布 C. 变量之间的函数关系 D. 数据之间的相关性13.一项关于大学生体重的调查显示,男生的平均体重是60公斤,标准差为5公斤;女生的平均体重是50公斤,标准差为5公斤。据此数据可以判断(B)A. 男生体重的差异较大 B. 女生体重的差异较大 C. 男生和女生的体重差异相同 D. 无法确定14.甲班学生平均成绩80分,标准差8.8分,乙班学生平均成绩70分,标准差8.4分,因此( A )A.甲班学生平均成绩代表性好一些 B.乙
11、班学生平均成绩代表性好一些C.无法比较哪个班学生平均成绩代表性好 D.两个班学生平均成绩代表性一样15. 两组数据的均值不等,但标准差相等,则(A )A. 均值小,差异程度大 B. 均值大,差异程度大 C. 两组数据的差异程度相同 D. 无法判断16.某城市60岁以上的老人中有许多没有参加医疗保险,下面是25位被调查老人的年龄:68,73,66,76,86,74,61,89,65,90,69,92,76,62,81,63,68,81,70,73,60,87,75,64,82。上述调查数据的中位数是( B )。A.70 B.73 C.74 D.73517.五所大学新生的教材费用如下(元):200
12、,250,375,125,280。教材费用的方差是( B )。A.92.965 B.8642.5 C.83.1505 D.6914.018. 一组数据包含10个观测值,则中位数的位置为( D )。A.4 B.5 C.6 D.5.519.各变量值与其( C )的离差之和等于零。A.中位数 B.众数 C.均值 D.标准差20.各变量值与其( D )的离差平方和最小。A.中位数 B.众数 C.标准差 D.均值三、名词解释1.次数分布:次数分配就是观察值按其分组标志分配在各组内的次数。2.中位数:是数据排列后,位置在最中间的数值3.离散程度:反映数据的分布离散和差异程度 4.集中趋势:四、简答题1.试
13、解释“上组限不在内”原则。 答:是指当相邻两组的上下限相叠时,为了“不重”(任一个单位数值只能分在其中某一组中,不能同时分在两组中),上组限数值不算在该组内。2. 众数、中位数和均值的关系。答:众数和中位数是从数据分布形状及位置角度来考虑的集中趋势代表值,而均值是经过对所有数据计算后得到的集中趋势值。在对称的次数分配和统计分布中,众数、中位数和均值都是同一数值,但在偏态分布中,众数、中位数和均值就不再是同一数值了,而具有相对固定的关系。在尾巴拖在右边的右偏(正偏)分布中,众数最小,中位数适中,均值最大;而在尾巴拖左边的左偏(负偏)分布中,众数最大,中位数适中,均值最小。总之五、计算分析题1.
14、某居委会小区有1500位20岁至60岁的女性,用简单随机重复抽样的方法抽出50位作为样本,调查其家务劳动时间,如下表: 每日家务劳动时间(分钟)人数(人)130以下41301406140150915016010160170817018061801904190以上3合计50要求:计算50名女性家务劳动时间的均值和方差。(计算结果小数点后保留2位)解:每日家务劳动时间(分)组中值x人数(人)fxf130以下125450013014013568101401501459130515016015510155016017016581320170180175610501801901854740190以上19
15、53585合计507860每日家务劳动时间(分)组中值()()人数(人)120130125-32.21036.8444147.36130140135-22.2492.8462957.04140150145-12.2148.8491339.56150160155-2.24.841048.41601701657.860.848486.7217018017517.8316.8461901.0418019018527.8772.8443091.3619020019537.81428.8434286.52合计4262.725018258根据方差计算公式:2.从某车间抽查30名工人周加工零件数的频数分布如
16、下表:按周加工零件数分组工人数90以下90100100110110120120130371262合计30计算30名工人周加工零件数的均值和方差。解: 3.甲、乙两个班参加同一学科考试,甲班的平均考试成绩为86分,标准差为12分。乙班考试成绩的分布如下: 考试成绩(分)学生人数(人) 60以下 6070 7080 8090 9010027975合计30 要求:(1)计算乙班考试成绩的均值及标准差; (2)比较甲乙两个班哪个班考试成绩的离散程度大?解:(1)(2),所以乙班考试成绩的离散程度不同大4.今有甲单位职工的平均工资为1050元,标准差为112元;乙单位职工总人数及工资资料如下:工资组(元
17、)职工人数(人)800以下8009009001000100011001100以上51024156合 计60根据上述资料要求:(1)计算乙单位职工的平均工资;(2) 指出甲、乙单位职工的平均工资,谁更有代表性?(1)(2)工资组(元)职工人数(人)组中值(元)800以下8009009001000100011001100以上5102415675085095010501150 -211.7-111.7-11.788.3188.344816.8912476.89136.897796.8935456.89224084.45124768.93285.36116953.35212741.34合 计60100
18、684.45681833.4根据计算结果,甲单位职工的平均工资更有代表性。综合练习题(第3章)一、填空题1.随机变量根据取值特点的不同,一般可分为离散型随机变量和连续型随机变量。2.设随机变量XN(2,4),则PX20.5。3.某地区六年级男生身高服从均值为164cm、标准差为4cm的正态分布,若从该地区任选一个男生,其身高在160cm以下的概率为(用标准正态分布函数表示)(-1)。4.考虑由2,4,10组成的一个总体,从该总体中采取重复抽样的方法抽取容量为3的样本,则抽到任一特定样本的概率为1/27。5.假定总体共有1000个单位,均值为32,标准差为5。采用不重复抽样的方法从中抽取一个容量
19、为30的简单随机样本,则样本均值的标准差为 0.8995(保留4位小数)。6.从一个标准差为5的总体中抽取一个容量为160的样本,样本均值为25,样本均值的标准差为0.3953。7.从标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差为5。8.设正态分布总体的方差为120,从总体中随机抽取样本容量为10的样本,样本均值的方差为12。9.在统计学中,常用的概率抽样方法有简单随机抽样、分层抽样、系统抽样和 整群抽样。10.从正态分布的总体中随机抽取容量为10的样本,计算出样本均值的方差为55,则总体方差为550。11.总体的均值为75,标准差为12,从此总体中抽取容量为36的样本
20、,则样本均值大于78的概率为(用标准正态分布函数表示)1-(1.5)。12.某班学生在统计学考试中的平均得分是70分,标准差是3分,从该班学生中随机抽取36名,计算他们的统计学平均成绩,则平均分超过71分的概率是(用标准正态分布函数表示) 1-(2)。13.某产品的平均重量是54公斤,标准差为6公斤,如果随机抽取36件产品进行测量,则其均值不超过52公斤的概率为(用标准正态分布函数表示)1-(2)或(-2)。14.智商的得分服从均值为100,标准差为16的正态分布。现从总体中抽取一个容量为n的样本,样本均值的标准差为2,求得样本容量n= 64。二、单项选择题1.下列随机试验中,概率测度遵循古典
21、概型的是( B )A.观察一家超市某日的营业额B.掷两个骰子,记录它们各自出现的点数C.随机抽5个学生来回答某个问题,观察回答正确的学生人数D.观察一射击选手射靶10次的中靶次数2.根据概率的古典概型,某一随机事件的概率就是( B )A.大量重复随机试验中该随机事件出现的次数占试验总次数的比重B.该随机事件包含的基本事件数占样本空间中基本事件总数的比重C.大量重复随机试验中该随机事件出现的次数D.专家估计该随机事件出现的可能性大小3.根据概率的统计定义,可用近似代替某一事件的概率的是( A )A.大量重复随机试验中该随机事件出现的次数占试验总次数的比重B.该随机事件包含的基本事件出现的次数占试
22、验总次数的比重C.大量重复随机试验中该随机事件出现的次数D.专家估计该随机事件出现的可能性大小4.下列概率中属于主观概率的是( D )A.掷一枚骰子,出现6点的概率是1/6B.根据交警的长期记录,汽车在某条山路上发生事故的概率是1C.某批产品共有100件,其中混进了1件次品,质检部门在随机抽查时抽到的第一件产品就是次品的概率是1%D.根据对张三的多次素质测评结果,某考核小组认为张三能胜任某项职位的概率是85%5.若随机变量XN(,2),ZN(0,1),则( B )A. B. C. D. 6.若随机变量XN(,2),则随着的增大,概率P|X-|将( C )A. 单调增大 B. 单调减少 C. 保
23、持不变 D. 增减不定7.为了调查某校学生的购书费用支出,从男生中抽取60名学生调查,从女生中抽取40名调查,这种调查方法是( D )A. 简单随机抽样 B. 整群抽样 C. 系统抽样 D. 分层抽样8.在重复抽样条件下,样本均值的标准差计算公式是( D )A. B. C. D. 9.在抽样组织形式中,最简单和最基本的一种是( D )A. 整群抽样 B. 系统抽样 C. 分层抽样 D. 简单随机抽样10.某学校学生的年龄分布是右偏的,均值为22,标准差为4.45。如果采取重复抽样的方法从该校抽取容量为100的样本,则样本均值的抽样分布是( A )A. 正态分布,均值为22,标准差为0.445B
24、. 分布形状未知,均值为22,标准差为4.45C. 正态分布,均值为22,标准差为4.45D. 分布形状未知,均值为22,标准差为0.44511.某总体容量为N,其标志值的变量服从正态分布,均值为,方差为。是样本容量为n的简单随机样本的均值(不重复抽样),则的分布为( D )。A. B. C. D.12.随机变量X,若越大,则其概率分布曲线就越( A )。A. 陡峭 B. 扁平 C. 对称 D. 不对称13.总体的均值为24,标准差为16。从该总体中抽取一个容量为64的随机样本,则样本均值的抽样分布为( C )A. N(24,4) B. N(16,2) C. N(24,2) D. N(16,1
25、)14.在下列关于样本均值的抽样分布的描述中,正确的是( C )A. 抽样分布总是近似服从正态分布 B. 重复抽取容量为n的样本并计算样本均值即可得到总体分布 C. 抽样分布的均值等于总体均值 D. 抽样分布的标准差等于总体标准差15.抽样调查抽取样本时,必须遵守的原则是( D )。A.灵活性 B.可靠性 C.准确性 D.随机性16.有一批灯泡共1000箱,每箱200个,现随机抽取20箱并检查这些箱中全部灯泡,此种检验属于( C )。A. 简单随机抽样 B. 分层抽样 C. 整群抽样 D. 系统抽样17.在同样的情况下,重复抽样的平均误差与不重复抽样的平均误差相比( B )A.两者相等 B.前
26、者大于后者 C.前者小于后者 D.没有可比性18.正态总体方差已知时,在小样本条件下,估计总体均值使用的统计量是( C )A. B. C. D. 19.对于简单随机重复抽样,在其他条件不变的情况下,若要求允许误差E缩小为原来的一半,则样本容量必须( B )A.扩大为原来的2倍 B.扩大为原来的4倍C.缩小为原来的1/4 D.缩小为原来的1/220.总体的均值为50,标准差为8,现从该总体中随机抽取容量为64的样本,则样本均值和抽样分布的标准误差分别是( B )。A.50,8 B.50,1 C.50,4 D.无法确定21.当正态总体的方差未知时,且为小样本条件下,则样本均值的抽样分布经过标准化转
27、化后服从的分布是( B )。A.正态分布 B.分布 C.分布 D.分布22.在抽样中先将总体各单位按某种顺序排列,并按某种规则确定一个随机起点,然后,每隔一定的间隔抽取一个单位,直至抽取n个单位形成一个样本。这样的抽样方式称为( C )。A.简单随机抽样 B.分层抽样 C.系统抽样 D.整群抽样23.智商的得分服从均值为100,标准差为16的正态分布。现从总体中抽取一个容量为n的样本,样本均值的标准差为2,试求样本容量为( B )。A.16 B.64 C.8 D.无法确定三、名词解释1.概率:概率是对某一特定事件出现可能性大小的一种数值度量。2.简单随机抽样:从总体中抽取n个单位作为样本时,使
28、得每一个总体单位都有相同的机会(概率)被抽中3.抽样分布:就是由样本n个观察值计算的统计量的概率分布。4.样本比率的抽样分布:在重复选取容量为n的样本时,由样本比率的所有可能取值形成的相对频数分布。四、简答题关于样本均值的抽样分布,中心极限定理的含义是什么?答:样本均值的抽样分布:当总体服从正态分布N(,2)时,在重复抽样条件下,来自该总体的容量为n的样本的均值x也服从正态分布,x的数学期望为,方差为2/n。即xN(,2/n)中心极限定理:设从均值为m,方差为s2的一个任意总体中重复地抽取容量为n的样本,当n充分大时(通常要求n30),样本均值的抽样分布近似服从均值为、方差为2/n的正态分布含
29、义:中心极限定理就是一个抽自任意总体样本容量为n的随机样本。当n充分大时,样本均值的抽样分布将近似于一个具有均值和标准差的正态分布。五、计算题1.某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。若规定寿命低于150小时为不合格品。试求:(1)该企业生产的电池的合格率是多少?(2)该企业生产的电池的寿命在200小时左右的多大范围内的概率不小于0.9。解:已知=200,=30(1)合格率为1-0.0475=0.9525=95.25%。或故该企业生产的电池的寿命在200小时左右的范围内的概率不小于0.9。2.某厂生产的某种节能灯管的使用寿命服从正态分布,对某批产品测试
30、的结果,平均使用寿命为1050小时,标准差为200小时。试求:(1)使用寿命在500小时以下的灯管占多大比例?(2)使用寿命在8501450小时的灯管占多大比例?(3)以均值为中心,95%的灯管的使用寿命在什么范围内?解:设X=“该种节能灯管的使用寿命”,根据题意:XN(1050,),因此,(1)由此可知该种节能灯管使用寿命在500小时以下的灯管约占0.298%。(2)由此可知该种节能灯管使用寿命在8501450小时的灯管约占81.86%。(3),由标准正态分布函数值表可知,K=1.96,即有:95%的灯管的使用寿命在均值左右392小时(即6581442小时)的范围内。3.一个具有n=64个观
31、察值的随机样本抽自于均值等于20、标准差等于16的总体。(1)给出的抽样分布(重复抽样)的均值和标准差。(2)描述抽样分布的形状。你的回答依赖于样本量吗?(3)计算标准正态z统计量对应于=15.5的值。(4)计算标准正态z统计量对应于=23的值。(5)计算P(25)(7)计算P(1623)解:已知 n=64,为大样本,=20,=16,(1)在重复抽样情况下,的抽样分布的均值为,(2)的抽样分布近似正态分布,回答上述问题依赖于大样本(3) (4) (5)(6)(7)综合练习题(第4章)一、填空题1.评价估计量好坏的三个标准是无偏性、有效性和一致性。2.如果估计量与相比满足 ,我们称是比更有效的一
32、个估计量。3.当 时,我们称估计量是总体参数的一个无偏估计量。4.总体参数估计的方法有 点估计和 区间估计两种。5.在其他条件相同的情况下,99%的置信区间比90%的置信区间宽。6.在简单重复抽样条件下,当允许误差E=10时,必要的样本容量n=100;若其他条件不变,当E=20时,必要的样本容量为25。7.某地区的写字楼月租金的标准差80元,要估计总体均值的95%的置信区间,要求允许误差不超过15元,应抽取的样本容量至少为110。8.拥有工商管理学士学位的大学毕业生年薪的标准差大约为2000元,假定想要估计平均年薪95%的置信区间,希望允许误差为400元,则应抽取97个毕业生作为样本。9.在其
33、他条件不变的情况下,总体数据的方差越大,估计时所需要的样本越多。二、单项选择题1.正态总体方差已知时,在小样本条件下,估计总体均值使用的统计量是( C )A. B. C. D. 2.对于简单随机重复抽样,在其他条件不变的情况下,若要求允许误差E缩小为原来的一半,则样本容量必须( B )A. 扩大为原来的2倍 B. 扩大为原来的4倍C.缩小为原来的1/4 D.缩小为原来的1/23.一个95%的置信区间是指( C )A. 总体参数有95%的概率落在这一区间内 B. 总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数 D. 在用同样方法构
34、造的总体参数的多个区间中,有95%的区间不包含该总体参数4.当样本容量一定时,置信区间的宽度( B )A. 随着置信水平的增大而减小 B. 随着置信水平的增大而增大C. 与置信水平的大小无关 D. 与置信水平的平方成反比5.当置信水平一定时,置信区间的宽度( A )A. 随着样本容量的增大而减小 B. 随着样本容量的增大而增大C. 与样本容量的大小无关 D. 与样本容量的平方根成正比6.下面说法正确的是( C )A. 置信区间越宽,估计的准确性越高 B. 置信区间越窄,估计的准确性越低C. 置信区间越宽,估计的可靠性越大 D. 置信区间越宽,估计的准确性越小7.正态总体方差未知时,在小样本条件
35、下,估计总体均值使用的统计量是( B )A. B. C. D. 8.参数估计中的估计量是指( A )。A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值C.总体参数的名称 D.总体参数的具体数值9.估计量的抽样标准误差反映了估计的( A )A.准确性 B.精确性 C.可靠性 D.显著性10.在置信水平不变的条件下,要缩小置信区间,则( A )A.需要增加样本容量 B.需要减少样本容量C.需要保持样本容量 D.需要改变统计量的抽样标准差11.在其它条件不变的情况下,要使估计时所需的样本容量小,应该( B )A.提高置信水平 B.降低置信水平C.使置信水平不变 D.使置信水
36、平等于1三、名词解释1.参数估计:就是用样本统计量去估计总体的参数。2.区间估计:是在点估计的基础上,给出总体参数估计的一个范围。3.置信水平:如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比率称为置信水平,或称为置信系数。4.点估计:就是用样本估计量的值直接作为总体参数的估计值。四、简答题1.简述样本容量与置信水平、总体方差、许误差的关系。答:样本容量与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需的样本容量也就越大;样本容量与总体方差成正比,总体的差异越大,所要求的样本容量也越大;样本容量与允许误差成反比,可以接受的允许误差越大,所需的样本容量就越小。
37、2. 解释置信水平为95%的置信区间。答:由100个样本样本构造的总体参数的100个置信区间中有95%的区间包含了总体参数的真值,而5%则没有包含,则95%这个值被称为置信水平。五、计算题1.某工厂有1500名职工,从中随机抽取50名职工作为样本,调查其工资水平,调查结果如下表:月工资(元)8008509009501000105011001150职工人数(人)469108643要求:(1)计算样本平均数和抽样平均误差;(2)以95%的可靠性估计该厂职工的月平均工资的区间。(计算结果小数点后保留两位)解:(1)计算样本平均数和样本标准差;(2)961-26.75=934.25961+26.75=
38、987.75因此,月平均工资的区间为(934.25,987.75)。2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。(1)假定总体标准差为2元,求样本均值的抽样标准误差;(2)如果样本均值为12元,求总体均值的置信水平为95%的置信区间。解:(1)样本均值的抽样标准误差:(2)总体均值的置信水平为95%的置信区间为总体均值的置信水平为95%的置信区间为(11.44,12.56)3.为了解某银行营业厅办理某项业务的办事效率,调查人员观察了该银行营业厅办理该业务的柜台办理每笔业务的时间,随机记录了15名客户办理业务的时间,测得平均办理时间为1
39、2分钟,样本标准差为4.1分钟,则:(1)平均办理时间的95%的置信区间是多少?(2)若样本容量为40,而观测的数据不变,则95%的置信区间是多少?3.解:(1)已知n=15,1-a=95%,a=0.05,t0.025(14)=2.1448。(2)n=40,z0.025=1.964. 用传统工艺加工某种水果罐头,每瓶中维生素C的含量为随机变量X(单位:mg)。设XN(,2),其中,2均未知。现抽查16瓶罐头进行测试,测得维生素C的平均含量为20.80mg,样本标准差为1.60mg,试求的置信度95%置信区间。 解:20.800.85=(19.95, 21.65)5.某电视台想了解观众对某专题节
40、目的收视情况,随机调查了500名观众,结果发现喜欢该节目的有175人。试以95%的概率估计观众喜欢这一专题节目的置信区间。 答:0.350.042=(0.308, 0.392) 6.某企业收到供货方发来的一批电子元件,想通过抽样检验的方法估计该批电子元件的合格率,根据过去的经验,已知该供货方的电子元件合格率在90%95%之间,若该企业希望在95%的概率把握下,对该批电子元件合格率的估计误差不超过3%,问最少需要抽查多少件电子元件?解:,在90%-95%之间,若按=90%计算,n=384.16,若按=95%计算,n=202.75,所以最少需要抽查385个电子元件。7.某高校后勤部门想估计学生每天
41、从寝室来回食堂的平均时间。以置信度为95%,并使估计值处在真值附近1分钟的误差范围之内,一个先前抽样的小样本给出的标准差为5分钟,试问应抽取多大样本? 解:n=96.04,至少应抽取97个样本 8.采用简单随机重复抽样的方法在 2000 件产品中抽查 200 件,其中合格品 190 件,要求:(1)计算样本合格品率及其抽样平均误差;(2)以 95% 的概率保证程度对该批产品合格品率和合格品数量进行区间估计。解:(1)(2)合格品率的区间估计为因此,合格品率的区间为(91.98%,98.02%)。据此可以推断合格品数量区间为(1839.6,1960.4)。综合练习题(第5章)一、填空题1.在一次假设检验中,当显著性水平时拒绝原假设,则用显著性水平时拒绝原假设。2.某一贫困地区所估计的营养不良人数高达20%,然而有人认为实际上比这个比例还要高,要检验该说法是否正确,则原假设与备择假设是3.在假设检验中,第二类错误是指原假设为假时没有拒绝原假设。4.在假设检验中,第一类错误是指原假设为真时拒绝原假设 。5.研究者
限制150内