常微分方程的初等解法_毕业论文(19页).doc
《常微分方程的初等解法_毕业论文(19页).doc》由会员分享,可在线阅读,更多相关《常微分方程的初等解法_毕业论文(19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-常微分方程的初等解法_毕业论文-第 19 页1常微分方程的基本概况 1.1.定义:自变量未知函数及函数的导数(或微分)组成的关系式,得到的便是微分方程,通过求解微分方程求出未知函数,自变量只有一个的微分方程称为常微分方程。1.2.研究对象:常微分方程是研究自然科学和社会科学中的事物、物体和现象运动演化和变化规律的最为基本的数学理论和方法。物理化学生物工程航空航天医学经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程。如牛顿运动规律、万有引力能量守恒人口发展规律生态总群竞争疾病传染遗传基因变异股票的涨伏趋势利率的浮动市场均衡价格的变化等。对这些规律的描述认识和分析就归结为对相应的常微
2、分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学各个领域。1.3.特点: 常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。 1.4.应用: 现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和
3、导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。2.一阶的常微分方程的初等解法一阶常微分的初等解法包括变量分离方程与变量变换可以化为变量分离方程的类型线性微分方程与常数变易法恰当微分方程与积分因子,下面我们就具体分析一阶常微分方程的初等解法。2.1、变量分离方程法形如,(2.1)的方程,称为变量分离方程,这里的,分别是x,y的连续函数。如果,我们可将(2.1)改写成,这样变量就“分离”开来了。
4、两边积分得到,(2.2)。例1:方程就可以用变量分离法求解方程解: 变量分离,得到 , 两边积分,即得 , 因而,通解为 ,(c为任意常数)2.2、可化为变量分离方程的类型(1) 形如,(2.3)的方程,称为齐次微分方程,这里是u的连续函数。作变量变换,(2.4)即,于是,(2.5).将(2.4),(2.5)代入(2.3),则原方程变为,整理后,得到,(2.6).方程(2.6)是一个变量分离方程,这就所为的可以化为变量分离的方程。例2方程 就是一个可以化为变量分离的方程。解 这是齐次微分方程,以 及代入,则原方程变为。即。 将上式分离变量,既有 , 两边积分,得到 ,(为任意常数)整理,得到
5、,令,得到 将代入上式,得到方程的通解为 (2)形如,(2.7)的方程也可以经变量变换化为变量分离方程,均为常数。 我们分三种情况来讨论: (常数)情形。这时方程化为,有通解,其中c 为任意常数。 情形。令,这时有是变量分离方程。 情形。如果方程(2.7)中,不全为零,方程右端分子分母都是x,y的一次多项式,因此(2.8).代表Oxy平面上两条相交的直线,设交点为。若令(2.9)。则(2.8)化为从而(2.7)变为,(2.10)。因此,求解上述变量分离方程,最后代回原变量即可得原方程(2.7)的解。如果方程(2.7)中,可不必求解(2.8),直接取变换即可。 上述解题的方法和步骤也适用于比方程
6、(2.7)更一般的方程类型。 例3 方程就可以用上述方法来求解。 解 解方程组 得x=1,y=2.令 代入原方程,则有, 再令,即,则上式化为, 两边积分,得 , 因此 , 记,并代回原变量,得, 把代入上式 得 整理,得 (c为任意常数)2.3、线性微分方程与常数变易法一阶线性微分方程,(2.9)。其中P(x),Q(x)在考虑的区间上是x的连续函数。若Q(x)=0,(2.9)变为,(2.10),(2.10)称为一阶其次线性微分方程。若,(2.9)称为一阶非其次线性微分方程。(2.10)是变量分离方程它的解为,(2.11)这里的c为任意常数。现在讨论非奇次线性微分方程(2.9)通解的求法。不难
7、看出,(2.10)是(2.9)的特殊情形,可以设想(2.11)中将常数c变易为x的待定函数c(x).令,(2.12)微分之,得到,(2.13).将(2.12),(2.13)代入(2.9),得到。即,积分后得到,这里的是任意常数。将上式代入(2.12),得到方程(2.9)的通解,(2.14)。这种将常数变易为待定函数的方法,我们通称为常数变易法。常数变易法实际上也是一种变量变换的方法,通过变换(2.12)可将方程(2.9)化为变量分离方程。若方程不能化为(2.9)形式,可将x看作y的函数,再看是否为(2.9)形式。例4 方程(n为常数)就可以用常数变易法求解。解 将方程改写为 , 首先,求齐次线
8、性微分方程 的通解 从 ,得到齐次线性微分方程的通解 其次,应用常数变易法求非齐次线性微分方程的通解。为此,在上式中把c看成为x的待定函数c(x),即, 微分之,得到 , 把,代入,得到 , 积分之,求得 因此,以所求的c(x)代入,即得原方程的通解 , (为任意常数)2.4、恰当微分方程与积分因子2.4.1恰当微分方程 如果方程,的左端恰好是某个二元函数的全微分,即+=则称原式为恰当微分方程。容易验证恰当微分方程的通解就是,这里的c为任意常数。 如果方程是恰当微分方程时,函数应该具有以下性质。和分别对y,x求偏导,得到,由得连续性,可得,故,这就是恰当微分方程的必要条件。 如果是恰当微分方程
9、我们可以利用“分项组合”的办法来求解。利用公式(2.15)例5 方程就可以用“分项组合” 方法来求解。 解 把方程重新“分项组合”得到 即 或者写成 于是,方程的通解为 ,(c为任意)2.4.2、积分因子 如果存在连续可微的函数,使得x+=0为一恰当微分方程,即存在函数,使,则称为方程的积分因子,而积分因子不是唯一的。这时是方程的通解,因而也就是的通解。 由(2.15)看到,同一方程可以有不同的积分因子,。可以证明,只要方程有解存在,则必有积分因子存在,并且不是唯一的。因此,在具体解题过程中,由于求出的积分因子不同从而通解可能具有不同的形式。 根据上述可知,函数为方程的积分因子的充要条件是,即
10、。 对于方程,如果存在只与x有关的积分因子,则,这时方程变成,即,由此可知,方程有只与x有关的积分因子的充要条件是,这里仅为x的函数。假如条件成立,则根据方程,可知求得方程的一个积分因子是。同样,有只与y有关的积分因子的充要条件是,这里的仅为y的函数。从而求得方程的一个积分因子。 例6 求解方程 解: ,方程不是恰当的 因为只与y有关故方程有只与y有关的积分因子 以乘方程两边,得到 或者写成 因而,通解为 (c为任意常数) 例7 求方程的通解。解: 经判断 ,所以该方程不是恰当方程。分组得显然前两项具有积分因子,相应的全微分为要使得成立。只需取,即可,这样就找到了一个积分因子。原方程两边同乘,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 初等 解法 毕业论文 19
限制150内