阿基米德三角形性质与高考题(4页).doc
《阿基米德三角形性质与高考题(4页).doc》由会员分享,可在线阅读,更多相关《阿基米德三角形性质与高考题(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-阿基米德三角形性质与高考题-第 4 页阿基米德三角形性质与高考题性质1:阿基米德三角形底边上的中线平行于抛物线的轴即:ABCPQOxyl19(07年江苏卷)如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点一条垂直于轴的直线,分别与线段和直线交于点(1)若,求的值;(5分)(2)若为线段的中点,求证:为此抛物线的切线;(5分)(3)试问(2)的逆命题是否成立?说明理由(4分)19本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力满分14分ABCPQOxyl解:(1)设直线的方程为,
2、将该方程代入得令,则因为,解得,或(舍去)故(2)由题意知,直线的斜率为又的导数为,所以点处切线的斜率为,因此,为该抛物线的切线(3)(2)的逆命题成立,证明如下:设若为该抛物线的切线,则,又直线的斜率为,所以,得,因,有故点的横坐标为,即点是线段的中点性质2:例7(13广东)已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.() 求抛物线的方程;() 当点为直线上的定点时,求直线的方程;() 当点在直线上移动时,求的最小值.性质3:22(05江西)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.22解:(1)设切点A、B坐标分别为,切线AP的方程为: 切线BP的方程为:解得P点的坐标为:所以APB的重心G的坐标为 ,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为: (2)因为由于P点在抛物线外,则同理有AFP=PFB.性质4:过焦点的阿基米德三角形面积的最小值为(21)(06年全国卷2)已知抛物线的焦点为F,A、B是热线上的两动点,且过A、B两点分别作抛物线的切线,设其交点为M。(I)证明为定值;(II)设的面积为S,写出的表达式,并求S的最小值。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 阿基米德 三角形 性质 考题
限制150内