新人教版八年级数学上册导学案(全 有答案)(152页).doc
《新人教版八年级数学上册导学案(全 有答案)(152页).doc》由会员分享,可在线阅读,更多相关《新人教版八年级数学上册导学案(全 有答案)(152页).doc(149页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-新人教版八年级数学上册导学案(全 有答案)-第 - 149 - 页河南省实验中学资料第一章 轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、 观察、感受生活中的轴对称图形,认识轴对称图形。2、 能判断一个图形是否是轴对称图形。3、 理解两个图形关于某条直线成轴对称的意义。4、 正确区分轴对称图形与两个图形关于某条直线成轴对称。5、 理解并能应用轴对称的有关性质。教学重点:1、 能判断一个图形是否是轴对称图形。2、 轴对称的有关性质。难点:1、 判断一个图形是否是轴对称图形。2、 正确区分轴对称图形与两个图形关于某条直线成轴对称。教学过程:一、情境导入教师展示图片:五角星、脸谱、正方
2、形、禁行标志、山水倒映等。学生欣赏,思考:这些图形有什么特点?二、探究新知1、 生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。教师巡回指导、点评。2、 动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。3、 教师给出轴对称图形的定义。问题:“完全重合”是什么意思?这条直线可能不经过这个图形本身吗?圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。指形
3、状相同,大小相等。不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。4、 猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。5、 你还能举出生活中轴对称图形的例子吗?6、 教科书第五页图1-6两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、 教师给出两个图形关于某条直线成轴对称的定义。8、 你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什
4、么异同?学生思考、分组讨论、交流。教师引导小结。三、巩固反馈1、26个英文大写字母中,是轴对称图形的是_。2、中华民族是一个有着五千年文明历史的古老民族,在她灿烂的文化中,汉字是其中一朵瑰丽的奇葩,请写出几个是轴对称的汉字_。3、关于奥运会五环图案有下列各说法:它不是轴对称图形;它是轴对称图形,只有一条对称轴它是轴对称图形,有无数条对称轴,其中正确的是_。从轴对称的角度,你觉得哪些图形比较独特?简要说明你的理由。5、画出一个只有三条对称轴的轴对称图形。ABCD6、上面哪一个选项的右边图形与左边图形成轴对称?四、课堂小结学完本节,你有什么收获?五、作业设计1、 必做题:教科书第6页练习题1-4题
5、。2、 选做题:ABGDCHKFE把长方形纸片折叠,使边CD落在EF处,折痕为KH,则与梯形CDGH成轴对称的图形是( )。A、梯形ABHG B、梯形ABKG C、梯形EFGH D、梯形EFKH1.2 线段的垂直平分线教学目标:1、 通过折叠的方式认识线段的轴对称性。2、 理解并能运用线段垂直平分线的性质。教学重点:引导学生了解有关线段垂直平分线的知识。难点:运用线段垂直平分线的性质解决问题。教学过程:一、自主探索ABMNO在纸上画一条线段AB,通过对折使点A与点B重合,独立解决以下问题:1、 将纸展开后铺平,记折痕所在的直线为MN,直线MN与线段AB的交点为O,线段AO与BO的长度有什么关系
6、?_2、 直线MN与线段AB有怎样的位置关系?_3、 由以上1、2,直线MN叫做线段AB的_。4、 线段AB是轴对称图形吗?如果是,对称轴是什么?_5、 在直线MN上任取一点P,连接PA与PB,如果把这张纸沿直线MN对折,PA与PB重合吗?_6、 在直线MN上再取另一点Q,连接QA与QB,把这张纸沿直线MN对折,QA与QB重合吗?_7、 由以上5、6,你有什么结论?_8、 尝试用尺规作图的方法作出线段AB的垂直平分线。_二、小组合作任意画一个三角形,用圆规和直尺作出它的三条边的垂直平分线,有什么发现?_三、学以致用NMABCPD1、 点P、C、D是线段AB的垂直平分线上的三点,分别连接PA、P
7、B,AC、BC,AD、BD,指出图中所有相等的线段。2、 任意画一条线段,用直尺和圆规把它四等分。3、 A B 要在A、B、C三个村庄之间修一座变电站,使它到三个村 庄的距离 相等, 你能在图中找出点O的位置吗? C四、 达标反馈,当堂训练MANCBDABCNMDPE 1、如上左图,直线MN和DE分别是线段AB、BC的垂直平分线,它们交于点P,请问:PA和PC相等吗?2、 如上右图,AB=AC,MN垂直平分AB,若AB=6,BC=4,求DBC的周长。AECDBAB3、 如上左图,在直线上求作一点P,使PA=PB.4、 如上右图,BAC=120, C=30,DE是线段AC的垂直平分线,求BAD的
8、度数。五、 课堂小结本节课主要学习了:1、线段垂直平分线的知识。2、线段的垂直平分线的点到线段两短点的距离相等。3、利用线段的垂直平分线的点到线段两短点的距离相等解决实际问题。六、作业设计3、 必做题:教科书第10页习题A组1-2题,B1-2题。4、 选做题:CBAa) 用直尺和圆规分别作出线段AB与BC的垂直平分线;b) 你有什么发现?1.3 角的平分线教学目标:1、通过折叠的方式认识角的轴对称性。2、理解并能运用角的平分线的性质。3、会画已知角的平分线。教学重点:引导学生了解有关线角平分线的知识。难点:运用角平分线的性质解决问题。:教学过程:一、自主探索ABCD在纸上画BAC ,把它剪下来
9、并对折,使角的两边重合,然后把纸铺平,独立解决以下问题:1、 角是轴对称图形吗?如果是,对称轴是什么?_2、 尝试用尺规作图的方法作出BAC的平分线AD。_3、在AD上任取一点P,作出点P到BAC 两边的垂线段PM与PN,垂足分别为点M和点N,如果把BAC沿AD折叠,线段PM与PN重合吗?由此,你能得出什么结论?_4、在AD上另取另一点Q,重复上述操作,你还能得出同样的结论吗? _ 二、 小组合作1、 任意作一个锐角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现?_2、 任意作一个直角三角形,用直尺和圆规作出它的三条角平分线,你有什么发现_3、 任意作一个钝角三角形,用直尺和圆规作出它
10、的三条角平分线,你有什么发现?猜想结论:_三、学以致用天泉农副产品集散地M位于三个村庄A、B、C之间,其位置到三条公路AB、AC、BC的距离相等,你能找到M的位置吗?ABC四、 达标反馈,当堂训练ODBAyxNAMBa) 如上左图,在直角坐标系中,AD是RtOAB的角平分线,点D到AB的距离是2,求点D的坐标。b) 如上右图,若点M在ANB的角平分线上,A=B=90,那么你有怎样的结论?_若点N在AMB的角平分线上,A=B=90,那么你有怎样的结论?_CBOADBCDA3、如上左图,ABC中,A=90,BD平分ABC,AD=3cm,BC=10cm, 求BDC的面积。4、如上右图,已知AOB和C
11、、D两点,是否能找到一点P,使得点P到OA、OB的距离相等,而且P点到C、D两点的距离相等。五、课堂小结 这节课你有哪些收获?_六、 作业设置1、 必做题:教科书第12页A组、B组。2、 选做题:M区铁路公路P1.4 等腰三角形导学案(泰山版八年级上册)一、 学习目标1、 经历探索等腰三角形的性质的过程,掌握等腰三角形的轴对称性、等腰三角形“三线合一”、等腰三角形的两个底角相等等性质。2、 经历探索等边三角形的轴对称性和内角性质的过程,掌握这个性质,并会作出合理的说明。3、 掌握已知底边和底边上的高用尺规作等腰三角形的方法。二、 学习重点、难点重点:等腰三角形与等边三角形的性质难点:等腰三角形
12、的性质的运用三、 学习过程(一) 情境导入瓦工师傅盖房时,看房梁是否水平,有时就用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边的中点,房梁就是水平的。为什么?你想知道其中的奥秘吗?学了本节后你将恍然大悟。(二) 自主学习自学课本P13P16“挑战自我”,解答下列问题:DABC1. 我们知道等腰三角形是轴对称图形,它底边上的高线所在的直线式它的对称轴,那么沿着对称轴将等腰三角形对折,对称轴两旁的部分能重合,如下图,仔细观察,你能得到哪些结论?说说你的想法.2. 等边三角形是轴对称图形吗?它有几条对称轴?等边三角形是等腰三角形吗?它与等腰三角形相比有何特别之处?ABC
13、3. 如图,B=C,AB=3.6cm,则AC=.(三) 合作探究探究点一:等腰三角形的性质例1 等腰三角形中有一个角为80.求另外两个角的度数. 总结:探究点二:等边三角形的性质例2 试说明“等边三角形的每个内角都等于60”小组合作:用一张正方形的纸折出一个等边三角形.探究点三:尺规作等腰三角形例3 已知一个等腰三角形的底边和腰,你能作出这个三角形吗?如果一直底边和底边上的高呢?(四) 练习达标1. 等腰三角形的两边长分别是6cm、3cm,则该等腰三角形的周长是( )A. 9 cm B. 12 cmC. 12 cm或15 cm D. 15 cm2. 等腰三角形的一个角为30,则它的底角为( )
14、A. 30 B. 75C. 30或75 D. 153如图,在ABC中,D、E是BC边上的两点,且AD=BD=DE=AE=CE,求B、BAC的度数.ABCED(五) 课堂小结这一节你学会了什么?(六) 拓展提升ABCD1. 如图所示,B=C ,AD平分BAC交BC于D,ABC的周长为36cm,ADC的周长为30cm,那么AD的长为cm.2、如图,ABC为等边三角形,1=2=3,试说明DEF为等边三角形.321FDEABC四. 作业 1.5 成轴对称图形的性质导学案(泰山版八年级上册)一、学习目标 1、经历探索轴对称图形的性质的过程,理解连接对应点的线被对称轴平分、对应线段相等、对应角相等的性质.
15、 2、会画出与已知图形关于某条直线对称的图形.二、学习重点、难点 重点:轴对称图形的性质 难点:利用轴对称图形的性质作对称图形三、学习过程 (一)情景导入 同学们,今年的10月1日是我们伟大的祖国60周岁的生日,全国上下正洋溢在一片欢歌笑语的海洋里,都在为母亲的生日积极地做准备,你做了什么准备呢?不如我们现在来叠五角星吧。你还记得怎么叠吗?跟老师一起做好了,五角星叠好了.请同学们想一想,这种折纸叠正五角星的方法,其中隐含着什么数学道理?(二)自主学习自学课本P17-P19例二,完成下列问题:1.的直线,叫做这条线段的垂直平分线.2.成轴对称的两个图形,在大小和形状方面有怎样的关系?你是怎么知道
16、的?A3.请你画出下图中点A关于直线的对称点A. 4.轴对称图形的对应线段、对应角有怎样的关系?(三)合作探究探究点一:成轴对称图形的性质要求:明确成轴对称图形的对应点连线被对称轴垂直平分,对应线段相等,对应角相等.同桌合作解决课本P18例1.探究点二:运用轴对称的性质作一个图形关于某条直线的轴对称图形.自学例二,然后小组交流纠错.【动手实践】画出下列图案的另一半,直线l是对称轴. lABC(四) 练习达标 利用10分钟的时间完成课本P18练习和P19练习(五)课堂小结 谈谈你的收获.(六)拓展提升1.课本P20习题A组2. 将矩形ABCD沿AE折叠,得到如图所示的图形,已知CED=80,则A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人教版八年级数学上册导学案全 有答案152页 新人 八年 级数 上册 导学案 答案 152
限制150内