矩阵的doolittle分解.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《矩阵的doolittle分解.ppt》由会员分享,可在线阅读,更多相关《矩阵的doolittle分解.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.2.2 矩阵的doolittle分解,定理3.12,L是单位下三角矩阵,U一个上三角矩阵,Gauss消元法的消元过程实际上是对线性代数方程组进行一系列初等行变换的过程。由线性代数知识知,线性代数方程组的初等变换相当于对其增广矩阵实行初等行变换,也即相当于增广矩阵左边乘以一个初等矩阵。,也可以直接用比较法导出矩阵A的LU分解的计算公式。上式可记为,比较第1行,比较第r行,同样,由,比较第r列,综合以上分析,有,因此可以推导出,U的第一行,L的第一列,-(1),-(2),思考,U的第r行,L的第r列,-(3),-(4),称上述(1) (4)式所表示的分解过程为矩阵A的Doolittle分解,f
2、unction l,u=lu_Doolittle1(A)% 求可逆矩阵的LU分解% A为可逆矩阵,l为单位下三角矩阵,u为上三角矩阵n=length(A);u=zeros(n);l=eye(n);u(1,:)=A(1,:);l(2:n,1)=A(2:n,1)/u(1,1);for k=2:n for j=k:n u(k,j)=A(k,j)-l(k,1:k-1)*u(1:k-1,j); end u(k,k:n)=A(k,k:n)-l(k,1:k-1)*u(1:k-1,k:n); for i=k+1:n l(i,k)=(A(i,k)-l(i,1:k-1)*u(1:k-1,k)/u(k,k); en
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 doolittle 分解
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内