空间解析几何课件材料.ppt
《空间解析几何课件材料.ppt》由会员分享,可在线阅读,更多相关《空间解析几何课件材料.ppt(152页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数量关系 ,第七章,第一部分 向量代数,第二部分 空间解析几何,在三维空间中:,空间形式 点, 线, 面,基本方法 坐标法; 向量法,坐标,方程(组),空间解析几何与向量代数,四、利用坐标作向量的线性运算,第一节,一、向量的概念,二、向量的线性运算,三、空间直角坐标系,五、向量的模、方向角、投影,机动 目录 上页 下页 返回 结束,向量及其线性运算,第七章,表示法:,向量的模 :,向量的大小,一、向量的概念,向量:,(又称矢量).,既有大小, 又有方向的量称为向量,向径 (矢径):,自由向量:,与起点无关的向量.,起点为原点的向量.,单位向量:,模为 1 的向量,零向量:,模为 0 的向量,有
2、向线段 M1 M2 ,或 a ,机动 目录 上页 下页 返回 结束,规定: 零向量与任何向量平行 ;,记作,因平行向量可平移到同一直线上,故两向量平行又称,两向量共线 .,若 k (3)个向量经平移可移到同一平面上 ,则称此 k,个向量共面 .,机动 目录 上页 下页 返回 结束,二、向量的线性运算,1. 向量的加法,三角形法则:,平行四边形法则:,运算规律 :,交换律,结合律,三角形法则可推广到多个向量相加 .,机动 目录 上页 下页 返回 结束,机动 目录 上页 下页 返回 结束,2. 向量的减法,三角不等式,机动 目录 上页 下页 返回 结束,3. 向量与数的乘法, 是一个数 ,规定 :
3、,可见,总之:,运算律 :,结合律,分配律,因此,机动 目录 上页 下页 返回 结束,定理1.,设 a 为非零向量 , 则,( 为唯一实数), 取 ,且,再证数 的唯一性 .,则,取正号, 反向时取负号,机动 目录 上页 下页 返回 结束,则,例1. 设 M 为,解:,机动 目录 上页 下页 返回 结束,三、空间直角坐标系,由三条互相垂直的数轴按右手规则,组成一个空间直角坐标系.,坐标原点,坐标轴,x轴(横轴),y轴(纵轴),z 轴(竖轴),过空间一定点 o ,坐标面,卦限(八个),zox面,1. 空间直角坐标系的基本概念,机动 目录 上页 下页 返回 结束,向径,在直角坐标系下,坐标轴上的点
4、 P, Q , R ;,坐标面上的点 A , B , C,点 M,特殊点的坐标 :,有序数组,(称为点 M 的坐标),原点 O(0,0,0) ;,机动 目录 上页 下页 返回 结束,坐标轴 :,坐标面 :,机动 目录 上页 下页 返回 结束,2. 向量的坐标表示,在空间直角坐标系下,设点 M,则,沿三个坐标轴方向的分向量.,的坐标为,机动 目录 上页 下页 返回 结束,四、利用坐标作向量的线性运算,设,则,平行向量对应坐标成比例:,机动 目录 上页 下页 返回 结束,例2.,求解以向量为未知元的线性方程组,解:,2 3 , 得,代入得,机动 目录 上页 下页 返回 结束,例3. 已知两点,在A
5、B直线上求一点 M , 使,解: 设 M 的坐标为,如图所示,及实数,得,即,机动 目录 上页 下页 返回 结束,说明: 由,得定比分点公式:,点 M 为 AB 的中点 ,于是得,中点公式:,机动 目录 上页 下页 返回 结束,五、向量的模、方向角、投影,1. 向量的模与两点间的距离公式,则有,由勾股定理得,因,得两点间的距离公式:,对两点,与,机动 目录 上页 下页 返回 结束,例4. 求证以,证:,即,为等腰三角形 .,的三角形是等腰三角形 .,为顶点,机动 目录 上页 下页 返回 结束,例5. 在 z 轴上求与两点,等距,解: 设该点为,解得,故所求点为,及,思考:,(1) 如何求在 x
6、oy 面上与A , B 等距离之点的轨迹方程?,(2) 如何求在空间与A , B 等距离之点的轨迹方程 ?,离的点 .,机动 目录 上页 下页 返回 结束,提示:,(1) 设动点为,利用,得,(2) 设动点为,利用,得,且,例6. 已知两点,和,解:,求,机动 目录 上页 下页 返回 结束,2. 方向角与方向余弦,设有两非零向量,任取空间一点 O ,称 =AOB (0 ) 为向量,的夹角.,类似可定义向量与轴, 轴与轴的夹角 .,与三坐标轴的夹角 , , ,为其方向角.,方向角的余弦称为其方向余弦.,机动 目录 上页 下页 返回 结束,方向余弦的性质:,机动 目录 上页 下页 返回 结束,例7
7、. 已知两点,和,的模 、方向余弦和方向角 .,解:,计算向量,机动 目录 上页 下页 返回 结束,例8. 设点 A 位于第一卦限,解: 已知,作业 P300 3 , 5, 13, 14, 15, 18, 19,角依次为,求点 A 的坐标 .,则,因点 A 在第一卦限 ,故,于是,故点 A 的坐标为,向径 OA 与 x 轴 y 轴的夹,第二节 目录 上页 下页 返回 结束,备用题,解: 因,1. 设,求向量,在 x 轴上的投影及在 y,轴上的分向量.,在 y 轴上的分向量为,故在 x 轴上的投影为,机动 目录 上页 下页 返回 结束,2.,设,求以向量,行四边形的对角线的长度 .,该平行四边形
8、的对角线的长度各为,对角线的长为,解:,为边的平,机动 目录 上页 下页 返回 结束,*三、向量的混合积,第二节,一、两向量的数量积,二、两向量的向量积,机动 目录 上页 下页 返回 结束,数量积 向量积 *混合积,第七章,一、两向量的数量积,沿与力夹角为,的直线移动,1. 定义,设向量,的夹角为 ,称,数量积,(点积) .,机动 目录 上页 下页 返回 结束,故,2. 性质,为两个非零向量,则有,机动 目录 上页 下页 返回 结束,3. 运算律,(1) 交换律,(2) 结合律,(3) 分配律,事实上, 当,时, 显然成立 ;,机动 目录 上页 下页 返回 结束,例1. 证明三角形余弦定理,证
9、:,则,如图 . 设,机动 目录 上页 下页 返回 结束,4. 数量积的坐标表示,设,则,当,为非零向量时,由于,两向量的夹角公式, 得,机动 目录 上页 下页 返回 结束,例2. 已知三点, AMB .,解:,则,求,故,机动 目录 上页 下页 返回 结束,为 ) .,求单位时间内流过该平面域的流体的质量P (流体密度,例3. 设均匀流速为,的流体流过一个面积为 A 的平,面域 ,与该平面域的单位垂直向量,解:,单位时间内流过的体积,的夹角为,且,机动 目录 上页 下页 返回 结束,二、两向量的向量积,引例. 设O 为杠杆L 的支点 ,有一个与杠杆夹角为,符合右手规则,机动 目录 上页 下页
10、 返回 结束,1. 定义,定义,向量,方向 :,(叉积),记作,且符合右手规则,模 :,向量积 ,引例中的力矩,思考: 右图三角形面积,S,机动 目录 上页 下页 返回 结束,2. 性质,为非零向量, 则,3. 运算律,(2) 分配律,(3) 结合律,(证明略),证明:,机动 目录 上页 下页 返回 结束,4. 向量积的坐标表示式,设,则,机动 目录 上页 下页 返回 结束,向量积的行列式计算法,( 行列式计算见 P339P342 ),机动 目录 上页 下页 返回 结束,例4. 已知三点,角形 ABC 的面积,解: 如图所示,求三,机动 目录 上页 下页 返回 结束,一点 M 的线速度,例5.
11、 设刚体以等角速度 绕 l 轴旋转,导出刚体上,的表示式 .,解: 在轴 l 上引进一个角速度向量,使,其,在 l 上任取一点 O,作,它与,则,点 M离开转轴的距离,且,符合右手法则,的夹角为 ,方向与旋转方向符合右手法则 ,向径,机动 目录 上页 下页 返回 结束,*三、向量的混合积,1. 定义,已知三向量,称数量,混合积 .,几何意义,为棱作平行六面体,底面积,高,故平行六面体体积为,则其,机动 目录 上页 下页 返回 结束,2. 混合积的坐标表示,设,机动 目录 上页 下页 返回 结束,3. 性质,(1) 三个非零向量,共面的充要条件是,(2) 轮换对称性 :,(可用三阶行列式推出),
12、机动 目录 上页 下页 返回 结束,例6. 已知一四面体的顶点,4 ) , 求该四面体体积 .,解: 已知四面体的体积等于以向量,为棱的平行六面体体积的,故,机动 目录 上页 下页 返回 结束,例7. 证明四点,共面 .,解: 因,故 A , B , C , D 四点共面 .,机动 目录 上页 下页 返回 结束,内容小结,设,1. 向量运算,加减:,数乘:,点积:,叉积:,机动 目录 上页 下页 返回 结束,混合积:,2. 向量关系:,机动 目录 上页 下页 返回 结束,思考与练习,1. 设,计算,并求,夹角 的正弦与余弦 .,答案:,2. 用向量方法证明正弦定理:,机动 目录 上页 下页 返
13、回 结束,证: 由三角形面积公式,所以,因,机动 目录 上页 下页 返回 结束,作业 P310 3 , 4 , 6 , 7 , 9(1) ; (2) , 10 , 12,第三节 目录 上页 下页 返回 结束,备用题,1. 已知向量,的夹角,且,解:,机动 目录 上页 下页 返回 结束,在顶点为,三角形中,求 AC 边上的高 BD .,解:,三角形 ABC 的面积为,2.,而,故有,机动 目录 上页 下页 返回 结束,四、二次曲面,第三节,一、曲面方程的概念,二、旋转曲面,三、柱面,机动 目录 上页 下页 返回 结束,曲面及其方程,第七章,一、曲面方程的概念,求到两定点A(1,2,3) 和B(2
14、,-1,4)等距离的点的,化简得,即,说明: 动点轨迹为线段 AB 的垂直平分面.,引例:,显然在此平面上的点的坐标都满足此方程,不在此平面上的点的坐标不满足此方程.,解:设轨迹上的动点为,轨迹方程.,机动 目录 上页 下页 返回 结束,定义1.,如果曲面 S 与方程 F( x, y, z ) = 0 有下述关系:,(1) 曲面 S 上的任意点的坐标都满足此方程;,则 F( x, y, z ) = 0 叫做曲面 S 的方程,曲面 S 叫做方程 F( x, y, z ) = 0 的图形.,两个基本问题 :,(1) 已知一曲面作为点的几何轨迹时,(2) 不在曲面 S 上的点的坐标不满足此方程,求曲
15、面方程.,(2) 已知方程时 , 研究它所表示的几何形状,( 必要时需作图 ).,机动 目录 上页 下页 返回 结束,故所求方程为,例1. 求动点到定点,方程.,特别,当M0在原点时,球面方程为,解: 设轨迹上动点为,即,依题意,距离为 R 的轨迹,表示上(下)球面 .,机动 目录 上页 下页 返回 结束,例2. 研究方程,解: 配方得,此方程表示:,说明:,如下形式的三元二次方程 ( A 0 ),都可通过配方研究它的图形.,其图形可能是,的曲面.,表示怎样,半径为,的球面.,球心为,一个球面, 或点, 或虚轨迹.,机动 目录 上页 下页 返回 结束,定义2. 一条平面曲线,二、旋转曲面,绕其
16、平面上一条定直线旋转,一周,所形成的曲面叫做旋转曲面.,该定直线称为旋转,轴 .,例如 :,机动 目录 上页 下页 返回 结束,建立yoz面上曲线C 绕 z 轴旋转所成曲面的方程:,故旋转曲面方程为,当绕 z 轴旋转时,若点,给定 yoz 面上曲线 C:,则有,则有,该点转到,机动 目录 上页 下页 返回 结束,思考:当曲线 C 绕 y 轴旋转时,方程如何?,机动 目录 上页 下页 返回 结束,例3. 试建立顶点在原点, 旋转轴为z 轴, 半顶角为,的圆锥面方程.,解: 在yoz面上直线L 的方程为,绕z 轴旋转时,圆锥面的方程为,两边平方,机动 目录 上页 下页 返回 结束,例4. 求坐标面
17、 xoz 上的双曲线,分别绕 x,轴和 z 轴旋转一周所生成的旋转曲面方程.,解:绕 x 轴旋转,绕 z 轴旋转,这两种曲面都叫做旋转双曲面.,所成曲面方程为,所成曲面方程为,机动 目录 上页 下页 返回 结束,三、柱面,引例. 分析方程,表示怎样的曲面 .,的坐标也满足方程,解:在 xoy 面上,,表示圆C,沿曲线C平行于 z 轴的一切直线所形成的曲面称为圆,故在空间,过此点作,柱面.,对任意 z ,平行 z 轴的直线 l ,表示圆柱面,在圆C上任取一点,其上所有点的坐标都满足此方程,机动 目录 上页 下页 返回 结束,定义3.,平行定直线并沿定曲线 C 移动的直线 l 形成,的轨迹叫做柱面
18、.,表示抛物柱面,母线平行于 z 轴;,准线为xoy 面上的抛物线.,z 轴的椭圆柱面.,z 轴的平面.,表示母线平行于,(且 z 轴在平面上),表示母线平行于,C 叫做准线, l 叫做母线.,机动 目录 上页 下页 返回 结束,一般地,在三维空间,柱面,柱面,平行于 x 轴;,平行于 y 轴;,平行于 z 轴;,准线 xoz 面上的曲线 l3.,母线,柱面,准线 xoy 面上的曲线 l1.,母线,准线 yoz 面上的曲线 l2.,母线,机动 目录 上页 下页 返回 结束,四、二次曲面,三元二次方程,适当选取直角坐标系可得它们的标准方程,下面仅,就几种常见标准型的特点进行介绍 .,研究二次曲面
19、特性的基本方法: 截痕法,其基本类型有:,椭球面、抛物面、双曲面、锥面,的图形通常为二次曲面.,(二次项系数不全为 0 ),机动 目录 上页 下页 返回 结束,1. 椭球面,(1)范围:,(2)与坐标面的交线:椭圆,机动 目录 上页 下页 返回 结束,与,的交线为椭圆:,(4) 当 ab 时为旋转椭球面;,同样,的截痕,及,也为椭圆.,当abc 时为球面.,(3) 截痕:,为正数),机动 目录 上页 下页 返回 结束,2. 抛物面,(1) 椭圆抛物面,( p , q 同号),(2) 双曲抛物面(鞍形曲面),特别,当 p = q 时为绕 z 轴的旋转抛物面.,( p , q 同号),机动 目录
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 解析几何 课件 材料
限制150内