椭圆及其标准规定方程.ppt
《椭圆及其标准规定方程.ppt》由会员分享,可在线阅读,更多相关《椭圆及其标准规定方程.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.1.1椭圆及其标准方程,天体的运行,如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?,生活中的椭圆,一.课题引入:,椭圆的画法,椭圆及其标准方程,F1,F2,一、椭圆的定义:,平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,,这两个定点叫做椭圆的焦点,,两焦点的距离叫做椭圆的焦距.,问题1:当常数等于|F1F2|时,点M的轨迹 是什么? 问题2:当常数小于|F1F2|时,点M的轨迹 是什么?,线段F1F2,轨迹不存在,1、椭圆的定义:,平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。,这两个定点叫做椭圆的焦点
2、,两焦点间的距离叫做椭圆的焦距。,几点说明:,1、F1、F2是两个不同的定点;,2、M是椭圆上任意一点,且|MF1| + |MF2| = 常数;,3、通常这个常数记为2a,焦距记为2c,且2a2c(?);,4、如果2a = 2c,则M点的轨迹是线段F1F2.,5、如果2a 2c,则M点的轨迹不存在.(由三角形的性质知),下面我们来求椭圆的标准方程.,(2)动点P到两个定点F1(- 4,0)、F2(4,0) 的距离之和为不小于8,则P点的轨迹为 ( ) A、椭圆 B、线段F1F2 C、直线F1F2 D、不能确定,课堂练习1,(1)动点P到两个定点F1(- 4,0)、F2(4,0)的距离 之和为8
3、,则P点的轨迹为 ( ) A、椭圆B、线段F1F2 C、直线F1F2 D、不能确定,B, 探讨建立平面直角坐标系的方案,方案一,2.求椭圆的方程:,原则:尽可能使方程的形式简单、运算简单; (一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.),(对称、“简洁”),O,X,Y,F1,F2,M,如图所示: F1、F2为两定点,且|F1F2|=2c,求平面内到两定点F1、F2距离之和为定值2a(2a2c)的动点M的轨迹方程。,解:以F1F2所在直线为X轴, F1F2 的中点为原点建立平面直角坐标系,则焦点F1、F2的坐标分别为(-c,0)、 (c,0)。,(-c,0),(c,0),(x,y
4、),设M(x,y)为所求轨迹上的任意一点,,则:|MF1|+ |MF2|=2a,O,X,Y,F1,F2,M,(-c,0),(c,0),(x,y),两边平方得:a4-2a2cx+c2x2=a2x2-2a2cx+a2c2+a2y2,即:(a2-c2)x2+a2y2=a2(a2-c2),因为2a2c,即ac,所以a2-c20,令a2-c2=b2,其中b0,代入上式可得:,b2x2+a2y2=a2b2,两边同时除以a2b2得:,(ab0),这个方程叫做椭圆的标准方程, 它所表示的椭圆的焦点在x 轴上。,a,A1,y,O,F1,F2,x,B2,B1,A2,c,b,三、椭圆方程的几何意义:,如果椭圆的焦点
5、在y轴上, 焦点是F1(o,-c)、F2(0,c)方程是怎样呢?,椭圆的第二种形式:,图 形,方 程,焦 点,F(c,0)在轴上,F(0,c)在轴上,a,b,c之间的关系,c2=a2-b2,P=M|MF1|+|MF2|=2a (2a2c0),定 义,四、两类标准方程的对照表:,注:,哪个分母大,焦点就在相应的哪条坐标轴上!,Y,椭圆的标准方程的再认识:,(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1,(3)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。,(4)由椭圆的标准方程可以求出三个参数a、b、c的值。,(2)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪 一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 及其 标准规 方程
限制150内