原核基因表达调控 (6).ppt
《原核基因表达调控 (6).ppt》由会员分享,可在线阅读,更多相关《原核基因表达调控 (6).ppt(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于原核基因表达调控 (6)现在学习的是第1页,共66页绪论 原核生物和单细胞真核生物直接暴露在变幻莫测的环境中,食物供应毫无保障,只有能根据环境条件的改变合成各种不同的蛋白质,使代谢过程适应环境的变化,才能维持自身的生存和繁衍。自然选择倾向于保留高效率的生命过程。在一个每30min增殖一倍的109细菌群体中,若有一个细菌变成了29.5min增殖一倍,大约经过80天的连续生长后,这个群体中的99.9%都将具有29.5min增殖一倍的生长速度。现在学习的是第2页,共66页 一个大肠杆菌细胞中约有2500-3000个基因。估计正常情况下,可带有107个蛋白质,平均每个基因产生3000多个蛋白质分子
2、。但大肠杆菌中一般带有15,000-30,000个核糖体,有50余种核糖体结合蛋白,数量也很惊人。此外,负责糖酵解系统的蛋白质数量也很大。而象半乳糖苷酶等诱导酶,其含量可少至每细胞仅1-5个分子。 现在学习的是第3页,共66页 一个体系在需要时被打开,不需要时被关闭。这种“开-关”(on-off)活性是通过调节转录来建立的,也就是说mRNA的合成是可以被调节的。当我们说一个系统处于“off”状态时,也有本底水平的基因表达,常常是每世代每个细胞只合成1或2个mRNA分子。所谓“关”实际的意思是基因表达量特别低,很难甚至无法检测。 科学家把这个从DNA到蛋白质的过程称为基因表达(gene expr
3、ession),对这个过程的调节就称为基因表达调控(gene regulation或gene control)。要了解动、植物生长发育的规律、形态结构特征和生物学功能,就必须弄清楚基因表达调控的时间和空间概念,掌握了基因表达调控的秘密,我们手中就有了一把揭示生物学奥妙的金钥匙。 现在学习的是第4页,共66页 基因表达调控主要表现在以下几个方面: 转录水平上的调控(transcriptional regulation); mRNA加工成熟水平上的调控(differential processing of RNA transcript); 翻译水平上的调控(differential transla
4、tion of mRNA). 原核生物中,营养状况(nutritionalstatus)和环境因素(environmental factor)对基因表达起着举足轻重的影响。在真核生物尤其是高等真核生物中,激素水平(hormone level)和发育阶段(developmental stage)是基因表达调控的最主要手段,营养和环境因素的影响力大为下降。 现在学习的是第5页,共66页现在学习的是第6页,共66页一、一、 乳糖操纵子的调控模式乳糖操纵子的调控模式 大肠杆菌乳糖操纵子(lactose operon)包括3个结构基因:Z、Y和A,以及启动子、控制子和阻遏子等。转录时,RNA聚合酶首先与
5、启动区(promoter,P)结合,通过操纵区(operator,O)向右转录。转录从O区的中间开始,按ZYA方向进行,每次转录出来的一条mRNA上都带有这3个基因。转录的调控是启动区和操纵区进行的 .现在学习的是第7页,共66页现在学习的是第8页,共66页 Z编码-半乳糖苷酶;Y编码-半乳糖苷透过酶;A编码-半乳糖苷乙酰基转移酶。-半乳糖苷酶是一种-半乳糖苷键的专一性酶,除能将乳糖水解成葡萄糖和半乳糖外,还能水解其他-半乳糖苷(如苯基半乳糖苷)。-半乳糖苷透过酶的作用是使外界的-半乳糖苷(如乳糖)能透过大肠杆菌细胞壁和原生质膜进入细胞内。-半乳糖苷乙酰基转移酶的作用是把乙酰辅酶A上的乙酰基转
6、到-半乳糖苷上,形成乙酰半乳糖。现在学习的是第9页,共66页 1 酶的诱导-lac体系受调控的证据在不含乳糖及-半乳糖苷的培养基中,lac+基因型每个大肠杆功细胞内大约只有1-2个酶分子。如果在培养基中加入乳糖,酶的浓度很快达到细胞总蛋白量的6%或7%,每个细胞中可有超过105个酶分子。 现在学习的是第10页,共66页现在学习的是第11页,共66页现在学习的是第12页,共66页 科学家把大肠杆菌细胞放在加有放射性35S标记的氨基酸但没有任何半乳糖诱导物的培养基中繁殖几代,然后再将这些带有放射活性的细菌转移到不含35S、无放射性的培养基中,随着培养基中诱导物的加入,-半乳糖苷酶便开始合成。分离-
7、半乳糖苷酶,发现这种酶无35S标记。说明酶的合成不是由前体转化而来的,而是加入诱导物后新合成的。现在学习的是第13页,共66页 已经分离在有诱导物或没有诱导物的情况下都能产生lacmRNA的突变体,这种失去调节能力的突变体称为永久型突变体,为分两类:I型和O型。 I型:野生型为I+,突变型为I-O型:野生型为O+,突变型为Oc。 现在学习的是第14页,共66页 I+I-或O+Oc后,Z、Y、A结构基因均表现为永久表达,所以I基因被称为调节基因(regulatory gene)。研究发现,I基因是一个产生阻遏物的调节基因,其产物使体系关闭。I-突变体由于不能产生阻遏物,使细胞成为lac永久表达型
8、。I-/I+局部二倍体由于带有一个正常阻遏物,使细胞中的lac仍然被抑制。 现在学习的是第15页,共66页 遗传学图谱分析指出,Oc突变位于I与Z之间,所以,lac体系的4个基因的序列为IOZY。通过这些观察,Jacob和Monod推断Oc突变代表DNA链上的一个位点或一个非编码区域,而不是一个基因,因为可编码的基因具有互补性,而Oc没有这一特性。O决定相邻Z基因的产物是诱导型合成还是永久型合成,O区域称为操纵基因。 现在学习的是第16页,共66页现在学习的是第17页,共66页现在学习的是第18页,共66页2. 操纵子模型操纵子模型 Jacob和Monod认为诱导酶(他们当时称为适应酶)现象是
9、个基因调控问题,可以用实验方法进行研究,因此选为突破口,终于通过大量实验及分析,建立了该操纵子的控制模型。现在学习的是第19页,共66页现在学习的是第20页,共66页现在学习的是第21页,共66页 Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码。 这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P),不能单独起动合成-半乳糖苷酶和透过酶的生理过程。 操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。当阻遏物与操纵基因结合时,lacmRNA的转录起始受到抑制。诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lacmRNA的合成
10、。当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。现在学习的是第22页,共66页3. Lac操纵子的本底水平表达操纵子的本底水平表达 因为诱导物需要穿过细胞膜才能与阻遏物结合,而运转诱导物需要透过酶。在非诱导状态下有少量(1-5个mRNA分子)lac mRNA合成-本底水平永久型合成。 现在学习的是第23页,共66页4. 葡萄糖对葡萄糖对lac操纵子的影响操纵子的影响-代谢物阻遏效代谢物阻遏效应应 研究表明,葡萄糖对lac操纵子表达的抑制作用是间接的,因为存在一种大肠杆菌突变株,它正常的糖酵解过程受阻,葡萄糖-6-磷酸不能转化为下一步代谢中间物,该菌株能在有
11、葡萄糖存在的情况下被诱导合成lac mRNA。现在学习的是第24页,共66页5. cAMP与代谢物激活蛋白与代谢物激活蛋白 现在学习的是第25页,共66页现在学习的是第26页,共66页 当葡萄糖和乳糖同时存在于培养基中时,lac启动子表达受阻,没有-半乳糖苷酶活性;当葡萄糖消耗完以后(图中箭头处),细胞内cAMP浓度增加,-半乳糖苷酶活性被诱导,一度停止生长的细胞又恢复分裂。如果将细菌放在缺乏碳源的培养基中,细胞内cAMP浓度就很高;若在含葡萄糖的培养基中培养,细菌中的cAMP浓度就会很低;如果将细菌置于甘油或乳糖等不进行糖酵解的碳源培养基中,细菌中cAMP的浓度也会很高。现在学习的是第27页
12、,共66页现在学习的是第28页,共66页现在学习的是第29页,共66页 研究证实,葡萄糖所引起的代谢物抑制(Catabolite repression)现象的实质是该代谢物降低了细胞中cAMP的含量.事实上,cAMP-CAP复合物是lac体系的positive regulator,它们不能代替lacI和lacO的功能(negative regulator)。 cAMP-CAP不但能与DNA相结合,造成双螺旋弯曲,易于形成三元转录起始复合物,它还能直接影响RNA聚合酶的活性。Dominant negative(Trans-dominant)lacI-d,只要有这个环的亚基存在,lacI+基因产物
13、(阻遏物)无法与O区相结合lac operon得到表达。 现在学习的是第30页,共66页6. lac操纵子操纵子DNA的调控区域的调控区域-P.O.区区 lac P(启动子区)从I基因结束到mRNA转录起始位点止,共长82bp(-82+1)O区就是阻遏物结合区,位于P区后半部分和转录起始区(-7+28),该区序列有对称性,其对称中心点在+11位。P区的CAMP-CAP结合区(-67-52)也有对称性,其对称位点在-60-59之间。现在学习的是第31页,共66页 在一个完全被诱导的细胞中,-半乳糖苷酶、透过酶及乙酰基转移酶的拷贝数比例为1:0.5:0.2,这个比例在一定程度上反映了以-半乳糖苷作
14、为唯一碳源时细胞的需要。不同的酶在数量上的差异是由于在翻译水平上受到调节所致。 lac mRNA可能与翻译过程中的核糖体相脱离,从而终止蛋白质链的翻译。这种现象发生的频率取决于每一个后续的AUG密码子再度起始翻译的概率。 在lac mRNA分子内部,A基因比Z基因更易受内切酶作用发生降解,因此,在任何时候Z基因的完整拷贝数要比A基因多。现在学习的是第32页,共66页二、二、 色氨酸操纵子的调控模式色氨酸操纵子的调控模式 色氨酸操纵子(tryptophane operon)负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其
15、代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。由于trp体系参与生物合成而不是降解,它不受葡萄糖或cAMP-CAP的调控。 色氨酸的合成分5步完成。每个环节需要一种酶,编码这5种酶的基因紧密连锁在一起,被转录在一条多顺反子mRNA上,分别以trpE、trpD、trpC、trpB、trpA代表,编码了邻氨基苯甲酸合成酶、邻氨基苯甲酸焦磷酸转移酶、邻氨基苯甲酸异构酶、色氨酸合成酶和吲哚甘油-3-磷酶合成酶。现在学习的是第33页,共66页 trpE基因是第一个被翻译的基因,和trpL和trpa(不是trpA)。trp操纵子中产生阻遏物的基因是trpR,该基因距trp基因簇很远,后者在大肠杆
16、菌染色体图上25min处,而前者则位于90min处。在位于65min处还有一个trpS(色氨酸tRNA合成酶),它和携带有trp的tRNATrp也参与trp操纵子的调控作用。 L区编码了前导肽,当有高浓度Trp存在时,由于弱化子a的作用,转录迅速减弱停止,生成140核苷酸的前导RNA;当Trp浓度较低时,弱化子不起作用,转录得以正常进行,生成长约7kb的mRNA,操纵子中第一个结构基因的起始密码子AUG在+162处。现在学习的是第34页,共66页现在学习的是第35页,共66页1trp操纵子的阻遏系统操纵子的阻遏系统 trpR基因突变常引起trp mRNA的永久型合成,该基因产物因此被称为辅阻遏
17、蛋白(aporepressor)。除非培养基中有色氨酸,否则这个辅阻遏蛋白不会与操纵区结合。辅阻遏蛋白与色氨酸相结合形成有活性的阻遏物,与操纵区结合并使之关闭转录trp mRNA。 阻遏-操纵机制对色氨酸来说是一个一级开关,主管转录是否启动,相当于粗调开关。trp操纵子中对应于色氨酸生物合成的还有另一个系统进行细调控,指示已经启动的转录是否继续下去。这个细微调控是通过转录达到第一个结构基因之前的过早终止来实现的,由色氨酸的浓度来调节这种过早终止的频率。现在学习的是第36页,共66页2弱化子与前导肽弱化子与前导肽 在trp mRNA 5端trpE基因的起始密码前有一个长162bp的mRNA片段被
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原核基因表达调控 6 基因 表达 调控
限制150内