聚类分析及MATLAB实现.ppt
《聚类分析及MATLAB实现.ppt》由会员分享,可在线阅读,更多相关《聚类分析及MATLAB实现.ppt(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第4 章 聚类分析( cluster analysis),4.1 样品(变量)相近性度量 4.2 谱系聚类法及MATLAB实现 4.3 快速聚类法,统计方法(聚类分析):,聚类分析所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类 系统聚类分析将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。最终可以按照需要来决定分多少类,每类有多少样本(指标),统计方法(系统聚类分析步骤):,系统聚类方法步骤: 计算n个样本两两之间的距离 构成n个类,每类只
2、包含一个样品 合并距离最近的两类为一个新类 计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值),若类的个数等于1,转5,否则转3 画聚类图 决定类的个数和类。,系统聚类分析:,主要介绍系统聚类分析方法。系统聚类法是聚类分析中应用最为广泛的一种方法,它的基本原理是:首先将一定数量的样品或指标各自看成一类,然后根据样品(或指标)的亲疏程度,将亲疏程度最高的两类进行合并。然后考虑合并后的类与其他类之间的亲疏程度,再进行合并。重复这一过程,直至将所有的样品(或指标)合并为一类。,系统聚类分析用到的函数:,聚类分析,研究对样品或指标进行分类的一种多元统计方法,是依据研
3、究对象的个体的特征进行分类的方法。 聚类分析把分类对象按一定规则分成若干类,这些类非事先给定的,而是根据数据特征确定的。在同一类中这些对象在某种意义上趋向于彼此相似,而在不同类中趋向于不相似。 职能是建立一种能按照样品或变量的相似程度进行分类的方法。,聚类分析有两种:一种是对样品的分类,称为Q型,另一种是对变量(指标)的分类,称为R型。,R型聚类分析的主要作用: 不但可以了解个别变量之间的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。 根据变量的分类结果以及它们之间的关系,可以选择主要变量进行Q型聚类分析或回归分析。(R2为选择标准) Q型聚类分析的主要作用: 可以综合利用多个变量的信息对
4、样本进行分析。 分类结果直观,聚类谱系图清楚地表现数值分类结果。 聚类分析所得到的结果比传统分类方法更细致、全面、合理。 在课堂上主要讨论Q型聚类分析, Q型聚类常用的统计量是距离.,4.1 样品(变量)间相近性度量 4.1.1 聚类分析的基本思想,在生产实际中经常遇到给产品等级进行分类的问题,如一等品、二等品等,在生物学中,要根据生物的特征进行分类;在考古时要对古生物化石进行科学分类;在球类比赛中经常要对各球队进行分组如何确定种子队,这些问题就是聚类分析问题。随着科学技术的发展,我们利用已知数据首先提取数据特征,然后借助计算机依据这些特征进行分类,聚类的依据在于各类别之间的接近程度如何计量,
5、通常采取距离与相似系数进行衡量。,设有n个样品的p元观测数据组成一个数据矩阵,其中每一行表示一个样品,每一列表示一个指标,xij表示第i个样品关于第j项指标的观测值,聚类分析的基本思想就是在样品之间定义距离,在指标之间定义相似系数,样品之间距离表明样品之间的相似度,指标之间的相似系数刻画指标之间的相似度。将样品(或变量)按相似度的大小逐一归类,关系密切的聚集到较小的一类,关系疏远的聚集到较大的一类,聚类分析通常有:谱系聚类、快速聚类,我们主要介绍谱系聚类的方法与MATLAB实现,4.1.2 样品间的相似度量距离,一.常用距离的定义,设有n个样品的p元观测数据:,这时,每个样品可看成p元空间的一
6、个点,每两个点之间的距离记为 满足条件:,7.兰氏距离,8.杰氏距离(Jffreys x3:人均烟酒茶支出,x4:人均其他副食支出,x5:人均衣着商品支出,x6:人均日用品支出,x7:人均燃料支出,x8人均非商品支出,表1 1991年五省城镇居民生活月均消费(元/人),计算各省之间的欧氏、绝对、明氏距离,解:a=7.939.778.4912.9419.2711.052.0413.29 7.6850.3711.3513.319.2514.592.7514.87 9.4227.938.28.1416.179.421.559.76 9.1627.989.019.3215.999.11.8211.35
7、 10.0628.6410.5210.0516.188.391.9610.81;,d1=pdist(a);% 此时计算出各行之间的欧氏距离,,为了得到书中的距离矩阵,我们键入命令:,D= squareform(d1), % 注意此时d1必须是一个行向量,结果是实对称矩阵,若想得到书中的三角阵,则有命令: S = tril(squareform(d1),S = 0 0 0 0 0 11.6726 0 0 0 0 13.8054 24.6353 0 0 0 13.1278 24.0591 2.2033 0 0 12.7983 23.5389 3.5037 2.2159 0,d3=pdist(a,m
8、inkowski,3); S3 = tril(squareform(d3),例2. 13个国家1990,1995,2000可持续发展能力如下:分成4类,采用不同的距离,得到结果如下,4.1.3 变量间的相似度量相似系数,当对p个指标变量进行聚类时,用相似系数来衡量变量之间的相似程度(关联度),若用 表示变量之间的相似系数,则应满足:,相似系数中最常用的是相关系数与夹角余弦。, 夹角余弦 两变量的夹角余弦定义为:, 相关系数 两变量的相关系数定义为:,例3.计算例1中各指标之间的相关系数与夹角余弦,解:a=7.939.778.4912.9419.2711.052.04 13.29 7.6850.
9、3711.3513.319.2514.592.75 14.87 9.4227.938.28.1416.179.421.55 9.76 9.1627.989.019.3215.999.11.82 11.35 10.0628.6410.5210.0516.188.391.96 10.81;,R=corrcoef(a);% 指标之间的相关系数,a1=normc(a); % 将a的各列化为单位向量 J=a1*a1 % 计算a中各列之间的夹角余弦,J = 1.0000 0.9410 0.9847 0.9613 0.9824 0.9546 0.9620 0.9695 0.9410 1.0000 0.978
10、2 0.9939 0.9853 0.9977 0.9947 0.9935 0.9847 0.9782 1.0000 0.9859 0.9911 0.9840 0.9931 0.9909 0.9613 0.9939 0.9859 1.0000 0.9944 0.9919 0.9947 0.9981 0.9824 0.9853 0.9911 0.9944 1.0000 0.9901 0.9901 0.9968 0.9546 0.9977 0.9840 0.9919 0.9901 1.0000 0.9952 0.9953 0.9620 0.9947 0.9931 0.9947 0.9901 0.99
11、52 1.0000 0.9968 0.9695 0.9935 0.9909 0.9981 0.9968 0.9953 0.9968 1.0000,4.2 谱系聚类法 谱系聚类法是目前应用较为广泛的一种聚类法。谱系聚类是根据生物分类学的思想对研究对象进行分类的方法。在生物分类学中,分类的单位是:门、纲、目、科、属、种。其中种是分类的基本单位,分类单位越小,它所包含的生物就越少,生物之间的共同特征就越多。利用这种思想,谱系聚类首先将各样品自成一类,然后把最相似(距离最近或相似系数最大)的样品聚为小类,再将已聚合的小类按各类之间的相似性(用类间距离度量)进行再聚合,随着相似性的减弱,最后将一切子类都
12、聚为一大类,从而得到一个按相似性大小聚结起来的一个谱系图。,聚类分析的基本思想是认为我们所研究的样本或指标(变量)之间存在着程度不同的相似性(亲疏关系)。于是根据一批样本的多个观测指标,具体找出一些彼此之间相似程度较大的样本(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样本(或指标)又聚合为另一类,关系密切的聚合到一个小的分类单位,关系疏远的聚合到一个大的分类单位,直到把所有样本(或指标)都聚合完毕,把不同的类型一一划分出来,形成一个由小到大的分类系统。最后把整个分类系统画成一张谱系图,用它把所有样本(或指标)间的亲疏关系表示出来。这种方法是最常用的、最基本的一种,称为系统聚类分析。,
13、4.2.1 类间距离,前面,我们介绍了两个向量之间的距离,下面我们介绍两个类别之间的距离:,设dij表示两个样品xi,xj之间的距离,Gp,Gq分别表示两 个类别,各自含有np,nq个样品.,即用两类中样品之间的距离最短者作为两类间距离,(2)最长距离,即用两类中样品之间的距离最长者作为两类间距离,最短距离(Nearest Neighbor),最长距离(Furthest Neighbor ),重心距离,最长距离,最短距离,A,B,C,D,E,F,中间距离,(3)类平均距离,即用两类中所有两两样品之间距离的平均作为两类间距离,(5)离差平方和距离(ward),显然,离差平方和距离与重心距离的平方
14、成正比。,4.2.2 类间距离的递推公式,设有两类Gp,Gq合并成新的一类Gr,包含了nr=np+nq个样品,如何计算Gr与其他类别Gk之间的距离,这就需要建立类间距离的递推公式。,(1)最短距离,(2)最长距离,(3)类平均距离,(4)重心距离,证明:,(1),将上式中加上再减去 与 ,合并同类项得,上式第二行合并同类项,得,(5)离差平方和距离,1. 选择样本间距离的定义及类间距离的定义; 2. 计算n个样本两两之间的距离,得到距离矩阵 3. 构造个类,每类只含有一个样本; 4. 合并符合类间距离定义要求的两类为一个新类; 5. 计算新类与当前各类的距离。若类的个数为1,则转到步骤6,否则
15、回到步骤4; 6.画出聚类图; 7.决定类的个数和类。,4.2.3 谱系聚类法的步骤谱系聚类的步骤如下:,系统聚类分析的方法,系统聚类法的聚类原则决定于样品间的距离以及类间距离的定义,类间距离的不同定义就产生了不同的系统聚类分析方法。 以下用dij表示样品X(i)和X(j)之间的距离,当样品间的亲疏关系采用相似系数Cij时,令 ; 以下用D(p,q)表示类Gp和Gq之间的距离。,(1)n个样品开始作为n个类,计算两两之间的距离或相似系数,得到实对称矩阵,(2)从D0的非主对角线上找最小(距离)或最大元素(相似系数),设该元素是Dpq,则将Gp,Gq合并成一个新类Gr=(Gp,Gq),在D0中去
16、掉Gp,Gq所在的两行、两列,并加上新类与其余各类之间的距离(或相似系数),得到n-1阶矩阵D1。,(3)从D1出发重复步骤(2)的做法得到D2,再由D2出发重复上述步骤,直到所有样品聚为一个大类为止。,(4)在合并过程中要记下合并样品的编号及两类合并时的水平,并绘制聚类谱系图。,例4. 从例1算得的样品间的欧氏距离矩阵出发,用下列方法进行谱系聚类。 (1)最短距离,(2)最长距离,解:我们用1,2,3,4,5分别表示辽宁、浙江、河南、甘肃和青海,将距离矩阵记为D0,(1)最短距离法:将各省看成一类,即Gi=i i=1,5,从D0可以看出各类中距离最短的是d43=2.20,因此将G3,G4在2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 聚类分析 matlab 实现
限制150内