高一上学期数学知识点总结(含答案)(11页).doc
《高一上学期数学知识点总结(含答案)(11页).doc》由会员分享,可在线阅读,更多相关《高一上学期数学知识点总结(含答案)(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高一上学期数学知识点总结(含答案)-第 11 页高一上学期数学知识概念方法题型易误点技巧总结一、集合与命题1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设为两个非空实数集合,定义集合,若,则中元素的有_个。(答:8)(2)非空集合,且满足“若,则”,这样的共有_个(答:7)2.遇到时,你是否注意到“极端”情况:或;同样当时,你是否忘记的情形?要注意到是任何集合的子集,是任何非空集合的真子集。如集合,且,则实数_.(答:)3.对于含有个元素的有限集合,其子集、真子集、非空子集、非空真子集的个数依次为 如满足集合M有_个。(答:7)4.集合的运算性
2、质:;.如设全集,若,则A_,B_.(答:,)5. 研究集合问题,一定要理解集合的意义抓住集合的代表元素。如:函数的定义域;函数的值域;函数图象上的点集,如设集合,集合N,则_ _(答:);6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如已知关于的不等式的解集为,若且求实数的取值范围。(答:)7.四种命题及其相互关系。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若则” ;逆否命题为“若则”。提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同
3、真同假。但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“”判断其真假,这也是反证法的理论依据。(5)哪些命题宜用反证法?如(1)“在ABC中,若C=900,则A、B都是锐角”的否命题为(答:在中,若,则不都是锐角);(2)已知函数,证明方程没有负数根。8.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件
4、,则条件是结论成立的必要条件。从集合角度解释,若,则A是B的充分条件;若,则A是B的必要条件;若A=B,则A是B的充要条件。如设命题p:;命题q:。若是的必要而不充分的条件,则实数a的取值范围是 (答:)二、不等式1. 不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3)左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,则;若,则。如(1)对于实数中,给出下列命题:; ,则。其中正确的命题是_(答:)(
5、2)已知,则的取值范围是_(答:)(3)已知,且则的取值范围是_ (答:)2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。如设,试比较的大小(答:)3. 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为的形式,若,则;若,则;若,则当时,;当时,。如已知关于的不等式的解集为,则关于的不等式的解集为_(答:)4. 一元二次不等式的
6、解集(联系图象)。尤其当和时的解集你会正确表示吗?设,是方程的两实根,且,则其解集如下表:或或RRR如解关于的不等式:。(答:当时,;当时,或;当时,;当时,;当时,)5. 对于方程有实数解的问题。首先要讨论最高次项系数是否为0,其次若,则一定有。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)对一切恒成立,则的取值范围是_(答:);(2)关于的方程有解的条件是什么?(答:,其中为的值域)6. 一元二次方程根的分布理论。方程在上有两根、在上有两根、在和上各有一根的充要条件分别是什么?(、)。根的分布理论成立的前提是开区间,若在闭区间讨论方程有实数解的情况,
7、可先利用在开区间上实根分布的情况,得出结果,再令和检查端点的情况如在区间上至少存在一个实数,使,求实数的取值范围。(答:)7. 二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程的两个根即为二次不等式的解集的端点值,也是二次函数的图象与轴的交点的横坐标。如(1)不等式的解集是,则=_(答:);(2)若关于的不等式的解集为,其中,则关于的不等式的解集为_(答:);(3)不等式对恒成立,则实数的取值范围是_(答:)。8. 简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依
8、次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现的符号变化规律,写出不等式的解集。如:(1)解不等式。 (答:)(2)不等式的解集是_(答:)(3)设函数、的定义域都是R,且的解集为,的解集为,则不等式的解集为_(答:)(4)要使满足关于的不等式(解集非空)的每一个的值至少满足不等式中的一个,则实数的取值范围是.(答:)9. 分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如:(1)解不等式 (答:)(2)关于的不等式的解集为
9、,求关于的不等式的解集(答:)10. 绝对值不等式的解法:(1)分段讨论(最后结果应取各段的并集):如解不等式(答:)(2)利用绝对值的定义;(3)数形结合;如解不等式(答:)(4)两边平方:如若不等式对任意恒成立,则实数的取值范围。(答:)11. 含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键”注意解完之后要写上:“综上,原不等式的解集是”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. (见4中例题)12. 含绝对值不等式的性质:同号或有;异号或有.如设,实数满足,求证:13. 利用重要不等式求函数最值时,你是否注意到:“
10、一正二定三相等,和定积最大,积定和最小”这17字方针。如:(1)下列命题中正确的是A.的最小值是2 B.的最小值是2C.的最大值是D.的最小值是(2)若,则的最小值是_(答:)(3)正数满足,则的最小值为_(答:)14. 常用不等式有:(1)(当且仅当时,取等号),根据目标不等式左右的结构选用;(2),(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。如果正数、满足,则的取值范围是_(答:)15. 证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。常用的放缩技巧有:如(1)已知,求证: ;(
11、2) 已知,求证:;(3)已知,且,求证:;(4)若,求证:;(5)已知,求证:;16. 不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)(1)恒成立问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上如(1)不等式对一切实数恒成立,求实数的取值范围(2)若不等式对满足的所有都成立,则的取值范围(3)若不等式对的所有实数都成立,求的取值范围.(2)能成立问题若在区间上存在实数使不等式成立,则等价于在区间上;若在区间上存在实数使不等式成立,则等价
12、于在区间上的.如已知不等式在实数集上的解集不是空集,求实数的取值范围_(3)恰成立问题若不等式在区间上恰成立, 则等价于不等式的解集为;若不等式在区间上恰成立, 则等价于不等式的解集为.三、函数1. 函数的定义域A和值域B都是非空数集!据此可知函数图像与轴的垂线至多有一个公共点,但与轴垂线的公共点可能没有,也可能有任意个。如(1)已知函数,那么集合中所含元素的个数有 个(答: 0或1);(2)若函数的定义域、值域都是闭区间,则 (答:2)2. 同一函数的概念。构成函数的三要素是定义域,值域和对应法则。而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高一上 学期 数学 知识点 总结 答案 11
限制150内