高三数学导数专题例题及知识点总结(14页).doc
《高三数学导数专题例题及知识点总结(14页).doc》由会员分享,可在线阅读,更多相关《高三数学导数专题例题及知识点总结(14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高三数学导数专题例题及知识点总结-第 14 页导数专题一、导数的基本应用(一)研究含参数的函数的单调性、极值和最值基本思路:定义域 疑似极值点 单调区间 极值 最值基本方法:一般通法:利用导函数研究法特殊方法:(1)二次函数分析法;(2)单调性定义法第一组本组题旨在强化对函数定义域的关注,以及求导运算和分类讨论的能力与技巧【例题1】已知函数,求导函数,并确定的单调区间解:令,得当,即时,所以函数在和上单调递减当,即时,的变化情况如下表:0当,即时,的变化情况如下表:0所以,时,函数在和上单调递减,在上单调递增,时,函数在和上单调递减时,函数在和上单调递减,在上单调递增 第二组 本组题旨在强化
2、对导函数零点进行分类讨论的意识、能力和技巧【例题2】已知函数的图象过点,且函数的图象关于y轴对称.()求的值及函数的单调区间;()若,求函数在区间内的极值.解:()由函数图象过点,得, 由,得,则;而图象关于轴对称,所以,所以,代入得 .于是.由得或,故的单调递增区间是,;由得,故的单调递减区间是.()由()得,令得或.当变化时,、的变化情况如下表:f(x)00f(x)增极大值减极小值增由此可得:当时,在内有极大值,无极小值;当时,在内无极值;当时,在内有极小值,无极大值;当时,在内无极值.综上所述,当时,有极大值,无极小值;当时,有极小值,无极大值;当或时,无极值.点评:本题是前面两个例题的
3、变式,同样考查了对导函数零点的分类讨论,但讨论的直接对象变为了函数自变量的研究范围,故此题思路不难,旨在帮助学生加深对此类问题本质的认识,并提升其详尽分类,正确计算的水平.【例题3】已知函数,a0,(I)讨论的单调性;(II)设a=3,求在区间1,是自然对数的底数.解:()由于,令得 当,即时,恒成立,在上都是增函数. 当,即时,由得或或或又由得,综上,当在上都是增函数;当在及上都是增函数,在是减函数.(2)当时,由(1)知,在1,2上是减函数,在上是增函数.又函数在区间1,上的值域为.点评:(1)第一问在前面例题的理论基础上,进一步加大了运算的难度,涉及到了换元法,分母有理化等代数技巧;(2
4、)第二问将问题延伸到了函数值域上,过程比较简单,是一个承上启下的过渡性问题.(二)利用函数的单调性、极值、最值,求参数取值范围基本思路:定义域 单调区间、极值、最值 不等关系式 参数取值范围基本工具:导数、含参不等式解法、均值定理等【例题4】已知函数的图象在与轴交点处的切线方程是.(I)求函数的解析式;(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.解:(I)由已知,切点为(2,0),故有,即又,由已知得联立,解得.所以函数的解析式为 (II)因为令当函数有极值时,方程有实数解.则,得.当时,有实数,在左右两侧均有,故无极值当时,有两个实数根情况如下表:+0-
5、0+极大值极小值所以在时,函数有极值;当时,有极大值;当时,有极小值;点评:(1) 本题第一问是求曲线切线的逆向设问,解题过程进一步强化了对切点的需求.(2) 本题第二问是函数求极值的逆向设问,解题方法本质仍然是求含参数的函数的极值,难度不大.【例题5】 设,函数()若是函数的极值点,求的值;()若函数,在处取得最大值,求的取值范围解:()因为是函数的极值点,所以,即,因此经验证,当时,是函数的极值点 ()由题设,当在区间上的最大值为时,即故得反之,当时,对任意,而,故在区间上的最大值为综上,的取值范围为点评:(1) 本题是求函数最值的逆向问题,答案所用的解法是一种比较特殊的方法,具有一定的思
6、维难度.(2) 本题若用一般方法,则可求出g(0)=0,将问题转化为g(x)0的恒成立问题,此种解法的计算量将有所加大.(三)导数的几何意义【例题6】设函数,曲线在点处的切线方程为.()求的解析式;()证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.解:()方程可化为,当时,;又,于是,解得, 故()设为曲线上任一点,由知曲线在点处的切线方程为,即令,得,从而得切线与直线的交点坐标为;令,得,从而得切线与直线的交点坐标为;所以点处的切线与直线所围成的三角形面积为;故曲线上任一点处的切线与直线所围成的三角形面积为定值6.二、导数应用的变式与转化(一)函数的零点存在与分
7、布问题问题设置:根据函数零点或方程实数根的个数求参数取值范围基本方法:通性通法:函数最值控制法特殊方法:(1)二次函数判别式法;(2)零点存在性定理 第一组 二次函数(1) 本组题旨在加深对二次函数零点存在性与分布问题的认识;(2) 本题旨在提升对函数与方程关系问题的认识水平;(3) 研究二次函数零点分布问题时,除了判别式法以外,应补充极值(最值)控制法,为三次函数零点分布研究做方法上的铺垫.【例题7】设函数 (1)略;(2)若方程有且仅有一个实根,求的取值范围. 解:因为 当时, ;当时, ;当时, ; 所以 当时,取极大值 ; 当时,取极小值 ; 故当 或时, 方程仅有一个实根. 解得 或
8、.点评:本题是零点问题的方程形式,用函数最值控制法解答,属于本类问题的原型题.【例题8】已知二次函数的导函数的图像与直线平行,且在=1处取得最小值m1(m).设函数(1)若曲线上的点P到点Q(0,2)的距离的最小值为,求m的值;(2)如何取值时,函数存在零点,并求出零点.解:(1)设,则; 又的图像与直线平行 ,解得 又在取极小值,解得 ,解得;所以, 设,则 ,解得;w.w.w.k.s.5.u.c.o.m (2)由,得 当时,方程有一解,函数有一零点; 当时,方程有二解,若,有两个零点;若,有两个零点; 当时,方程有一解,即,有一零点点评:(1) 本题第一问是涉及均值定理的最值问题,题目计算
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 导数 专题 例题 知识点 总结 14
限制150内