高一数学必修一,必修二概念(15页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高一数学必修一,必修二概念(15页).doc》由会员分享,可在线阅读,更多相关《高一数学必修一,必修二概念(15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高一数学必修一,必修二概念-第 15 页必修一(1)确定性:集合中的元素必须是确定的.即任何一个对象,都能判断它是或者不是某个集合的元素,二者必居其一.(2)互异性:集合中的任意两个元素都是不同的.即同一个元素在一个集合里不能同时出现.(3)无序性:集合中的元素没有顺序性.(1)如果是集合的元素,就说属于集合,记作;(2)如果不是集合的元素,就说不属于集合,记作.3.集合的表示方法 (1) 列举法:列举法是把集合中元素一一列举出来的方法.(2) 描述法:描述法是用确定的条件表示某些对象是否属于这个集合的方法.(3) 图示法(指文氏图法)(1) 有限集:含有有限个元素的集合.(2) 无限集:含
2、有无限个元素的集合.5集合与集合的关系有“包含”和“不包含”两种情形. 若且,则7. 子集的性质(1)AA (2)AB, BC AC (3)AB BAA=B (4)A=的所有子集的个数为;8. 空集(1)空集是任何集合的子集,记作:A (2)空集是任何非空集合的真子集,记作:A()9. 补集(1)补集的意义: (2)补集的特性:10.交集:AB =x|xA且xB 并集: AB =x|xA或xB11交集、并集的性质1213. 14. 最基本绝对值不等式|x|,|x|(0)的解(1)x,x(0)的解一般地,不等式x(0)的解集xx;不等式x(0)的解集是xx,或x.(2)|x|,|x| (0)解的
3、几何意义不等式|x|,|x| (0)在数轴上分别表示到原点的距离小于、大于的点,如下图所示:15. |x+b|c,|x+b|c (c0)型不等式的解法(1) |x+b|c,|x+b|c (c0)型不等式的解法|x+b|c (c0)型不等式的解法是:先化为不等式组-cx+bc,再由不等式的性质求出原不等式的解集.|x+b|c (c0)型不等式的解法是:先化为x+bc或x+b-c,再进一步利用不等式性质求出原不等式的解集.17. 复合命题的三种表现形式或且非真真真真真真真假真假真真假假假真假真真假真假假假假假假假18. 常用的正面叙述的词语及它的否定列举如下正面词语至多有一个至少有一个任意的所有的
4、至多有n个任意两个否 定至少有两个一个也没有某个某些至少有n+1个某两个正面词语等 于大于()小于()是都是一定否 定不等于不大于()不小()不是不都是不一定(1)用和分别表示原命题的条件和结论,用和分别表示和的否定,则四种命题的形式为:原命题:若则 逆命题:若则否命题:若则 逆否命题:若则(2)四种命题的关系:互否互否互逆原命题(若则)逆命题(若则)互逆否命题若(则)逆否命题(若则) 注:一个命题它的逆否命题。当一个命题的真假不易判断时,可转而判断它的逆否命题特称命题的否定是全称命题;全称命题的否定是特称命题.21.命题的否定与否命题 命题T:若,则 命题T的否定: 若,则; 命题T的否命题
5、: 若,则,则是的充分条件;若,则是的必要条件;若,且,则是的充要条件是的充分条件,则是的必要条件是的充要条件的步骤充分性:把当作已知条件,结合命题的前提条件,推出必要性:把当作已知条件,结合命题的前提条件,推出第二章 函数、导数及其应用1. 映射有如下三个特征(A到B)(1)A中的任一元素在B中都有象,且象唯一;(2)A中不同的元素在B中可以有相同的象;(3)并不要求B中所有元素在A中都有原象.2.A=,B=,从到可以建立个不同的映射;3. 函数的表示方法:常用的有解析法、列表法、图象法三种.4.函数定义域的求法:列方程(组),解方程(组).与实际问题有关的函数,其定义域是使函数解析式有意义
6、且使实际问题有意义的自变量的范围.(1)=+ 单调性法;(2)配方法; (4) 反表示法;单调性法;(5) 判别式法;单调性法; (6) 判别式法;均值不等式法 ; (7) 换元法;单调性法 ; (8)y=sinx+b;y=cosx+b 有界性; (1)已知,求的方法:直接把中的换成即可;(2)已知,求的方法:换元法:设=,反解,代入即可求得;配凑法:在中凑出,直接将换成.把它写成y=f(x).注:(1)一个函数在其整个定义域内不一定存在反函数,但在某一个区间上有反函数.(2)反函数的定义域与值域分别是原函数的值域与定义域.(3)反函数有下面两条性质:在同一坐标系中,互为反函数的两个函数的图象
7、关于直线y=x对称;反之,如果两个函数的图象关于直线y=x对称,那么这两个函数是互为反函数; 函数与其反函数在各自的定义域上有相同的单调性.单调递增函数与其反函数图象的交点必在直线y=x上. (4)求反函数的一般步骤是:由已知函数y=f(x),解出x=f(y);把x=f(y)中的x与y对调,得y=f(x);写出定义域(即原来函数的值域).若的定义域I关于原点对称,(即则),且(或),则函数叫偶函数(或奇函数)9. 奇偶函数的的性质是奇函数的图象关于原点对称;是偶函数的图象关于轴对称。奇函数在其对称区间上具有相同的单调性;偶函数在其对称区间上具有相反的单调性。 定义法:定义域关于原点对称与,结合
8、起来判断;或定义域关于原点对称与是偶函数;是奇函数结合起来判断。 图象法:利用图象的对称性判断。 若是偶函数,则 若是奇函数,且在处有定义,则f(0)=0; 若且的定义域关于原点对称,则既是奇函数又是偶函数;12单调函数的定义 设是定义域内的一个区间,对于任意的, 若时,有,则在上为增函数; 若时,有,则在上为减函数; 定义法:任取两变量-作差-变形-定号-结论;14.复合函数单调性 同增异减原则15. 有关函数单调性的重要结论若都为增(或减)函数,则为增(或减)函数;若为增函数,为减函数,则为增函数;若为减函数,为增函数,则为减函数;奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单
9、调性相反;互为反函数的两个函数有相同的单调性;16图象的变换对称变换:平移变换:17幂的有关概念n个 正整数指数幂: 零指数幂: 负整数指数幂: 正分数指数幂: 负分数指数幂: 0的正分数指数幂等于0;0的负分数指数幂没有意义18有理指数幂的性质19“指数与对数 ”中的重要公式(7). .解析式图象1yxo1yxo定义域值 域单调性在上是增函数在上是减函数奇偶性非奇非偶函数非奇非偶函数对的影响当时,当时,当时,当时,当时, 当时,21对数函数的图象及性质解析式图象1yxo1yxo定义域值 域单调性在上是增函数在上是减函数奇偶性非奇非偶函数非奇非偶函数对的影响当时,当时,当时,当时,当时,当时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 概念 15
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内