高中数学离心率的求法题型总结(8页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学离心率的求法题型总结(8页).doc》由会员分享,可在线阅读,更多相关《高中数学离心率的求法题型总结(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学离心率的求法题型总结-第 8 页离心率的五种求法椭圆的离心率,双曲线的离心率,抛物线的离心率一、直接求出、,求解已知圆锥曲线的标准方程或、易求时,可利用率心率公式来解决。例1:已知双曲线()的一条准线与抛物线的准线重合,则该双曲线的离心率为( )A. B. C. D. 解:抛物线的准线是,即双曲线的右准线,则,解得,故选D变式练习1:若椭圆经过原点,且焦点为、,则其离心率为( )A. B. C. D. 解:由、知 ,又椭圆过原点,所以离心率.故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A. B. C. D 解:由题设,则,因此选C变式练习3:点P
2、(-3,1)在椭圆()的左准线上,过点且方向为的光线,经直线反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A B C D 解:由题意知,入射光线为,关于的反射光线(对称关系)为,则解得,则,故选A二、构造、的齐次式,解出根据题设条件,借助、之间的关系,构造、的关系(特别是齐二次式),进而得到关于的一元方程,从而解得离心率。例2:已知、是双曲线()的两焦点,以线段为边作正三角形,若边的中点在双曲线上,则双曲线的离心率是( )A. B. C. D. 解:如图,设的中点为,则的横坐标为,由焦半径公式, 即,得,解得(舍去),故选D变式练习1:设双曲线()的半焦距为,直线过,两点.已知原点到直线的
3、距离为,则双曲线的离心率为( )A. B. C. D. 解:由已知,直线的方程为,由点到直线的距离公式,得,又, ,两边平方,得,整理得,得或,又 ,故选A变式练习2:双曲线虚轴的一个端点为,两个焦点为、,则双曲线的离心率为( )A B C D 解:如图所示,不妨设,则,又,在中, 由余弦定理,得,即, ,故选B三、采用离心率的定义以及椭圆的定义求解例3:设椭圆的两个焦点分别为、,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是_。解:四、根据圆锥曲线的统一定义求解例4:设椭圆()的右焦点为,右准线为,若过且垂直于轴的弦的长等于点到的距离,则椭圆的离心率是.解:如图所示,是过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 离心 求法 题型 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内