高考数学知识梳理复习题8第2讲二项分布与超几何分布(8页).doc
《高考数学知识梳理复习题8第2讲二项分布与超几何分布(8页).doc》由会员分享,可在线阅读,更多相关《高考数学知识梳理复习题8第2讲二项分布与超几何分布(8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高考数学知识梳理复习题8第2讲 二项分布与超几何分布-第 8 页高考数学知识梳理复习题8第2讲 二项分布与超几何分布 知 识 梳理 1条件概率:称为在事件A发生的条件下,事件B发生的概率。特别提醒: 0P(B|A)1; P(BC|A)=P(B|A)+P(C|A)。2. 相互独立事件:如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。特别提醒:如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事
2、件A1,A2,An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。即:P(A1A2An)= P(A1)P(A2)P(An): 在同样的条件下,重复地、各次之间_的一种试验.在这种试验中,每一次试验只有_结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.答案: 相互独立地进行, 两种P,那么在n次独立重复试验中这个事件恰好发生k次的概率计算公式:_答案:Pn(k)=CPk(1P)nk,其中,k=0,1,2,,n.:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数是一个随机变量如果在一次试验中某事件发生的概率是P,那
3、么在n次独立重复试验中这个事件恰好发生k次的概率是,(k0,1,2,,n,)于是得到随机变量的概率分布如下:01knP由于恰好是二项展开式中的各项的值,所以称这样的随机变量服从_,记作B(n,p),其中n,p为参数,并记b(k;n,p)答案:二项分布6. 两点分布: X 0 1 P 1p p 特别提醒: 若随机变量X的分布列为两点分布, 则称X服从两点分布,而称P(X=1)为成功率.7. 超几何分布:一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则其中,。称分布列 X 0 1 m P 为超几何分布列, 称X服从_答案: 超几何分布。 重 难 点 突 破 1.重点:理解超几何分
4、布及其导出过程.了解条件概率和两个事件相互独立的概念,能理解n次独立重复实验的模型及二项分布. 2.难点:能利用超几何分布, 二项分布及n次独立重复实验解决一些简单的实际问题3.重难点:.(1) “互斥”与“独立”混同问题1: 甲投篮命中率为O8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,则两人都恰好投中两次为事件A+B,P(A+B)=P(A)+P(B): 点拨: 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和正确解答:设“甲
5、恰好投中两次”为事件A,“乙恰好投中两次”为事件B,且A,B相互独立,则两人都恰好投中两次为事件AB,于是P(AB)=P(A)P(B)= (2)“条件概率P(B / A)”与“积事件的概率P(AB)”混同问题2:袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率错解 记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=.点拨:本题错误在于P(AB)与P(B/A)的含义没有弄清, P(AB)表示在样本空间S中,A与B同时发生的概率;而P(B/A)表示在缩减的样本空间SA中,作为条件的A已
6、经发生的条件下事件B发生的概率。正确答案:P(C)= P(AB)=P(A)P(B/A)=。 热 点 考 点 题 型 探 析考点一: 条件概率,相互独立事件和独立重复试验题型1. 条件概率例1 一张储蓄卡的密码共有6位数,每位数字都可从09中任选,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:按第一次不对的情况下,第二次按对的概率; 任意按最后一位数字,按两次恰好按对的概率;若他记得密码的最后一位是偶数,不超过2次就按对的概率解题思路:这是一个一般概率还是条件概率?应选择哪个概率公式?“按两次恰好按对”指的是什么事件?为何要按两次?隐含什么含义?第一次按与第二次按有什么关系?应选择
7、哪个概率公式?“最后一位是偶数”的情形有几种?“不超过2次就按对”包括哪些事件?这些事件相互之间是什么关系?应选择用哪个概率公式?解析:设事件表示第次按对密码事件表示恰好按两次按对密码,则设事件表示最后一位按偶数,事件表示不超过2次按对密码,因为事件与事件为互斥事件,由概率的加法公式得:【名师指引】条件概率相当于随机试验及随机试验的样本空间发生了变化,事件A发生的条件下事件B发生的概率可以看成在样本空间为事件A中事件B发生的概率,从而得出求条件概率的另一种方法缩减样本空间法将条件概率的计算公式进行变形,可得概率的乘法公式【新题导练】2. 设 100 件产品中有 70 件一等品,25 件二等品,
8、规定一、二等品为合格品从中任取1 件,求 (1) 取得一等品的概率;(2) 已知取得的是合格品,求它是一等品的概率 解: 设B表示取得一等品,A表示取得合格品,则 (1)因为100 件产品中有 70 件一等品, (2)方法一: 因为95 件合格品中有 70 件一等品,所以 方法二:题型2。相互独立事件和独立重复试验例2 (2008四川省成都市一诊)某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定他们三人都有“同意”、“中立”、“反对”三类票各一张投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响规定:若投票结果中至少有两张“同意”票,则决定对该
9、项目投资;否则,放弃对该项目投资 ()求此公司一致决定对该项目投资的概率;()求此公司决定对该项目投资的概率;解题思路: 注意相互独立事件和独立重复试验恰有次发生的区别解析:()此公司一致决定对该项目投资的概率P= ()3()此公司决定对该项目投资的概率为PC32()2()C33()3答: ()此公司一致决定对该项目投资的概率为()此公司决定对该项目投资的概率为.【名师指引】 除注意事件的独立性外, 还要注意恰有次发生与指定第次发生的区别, 对独立重复试验来说,前者的概率为,后者的概率为【新题导练】1. (湖南卷16).(本小题满分12分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正
10、式签约,甲表示只要面试,且面试是否合格互不影响.求:至少有1人面试合格的概率;解: 用A,B,CA,B,C相互独立,且P(A)P(B)P(C).至少有1人面试合格的概率是2(山东卷18)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为表示甲队的总得分.()求随机变量分布列;()用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).解: ()由题意知,的可能取值为0,1,2,3,且所以的分布列为0123P()用C表示“甲得2分乙得1分”这一事件,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学知识梳理复习题8第2讲 二项分布与超几何分布8页 高考 数学知识 梳理 复习题 二项分布 几何 分布
限制150内