高一数学必修四第2章平面向量导学案(全)(27页).doc
《高一数学必修四第2章平面向量导学案(全)(27页).doc》由会员分享,可在线阅读,更多相关《高一数学必修四第2章平面向量导学案(全)(27页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高一数学必修四第2章平面向量导学案(全)-第 21 页高一年级数学导学案20132014学年第 二 学 期模块: 必 修 4 章节:第二章 平 面 向 量班级: 姓名: 13级数学备课组(高一)印目录第二章 平面向量2.1 向量的概念及表示 1课时2.2 向量的线性运算 4课时2.2.1、 向量的加法 (1课时)2.2.2、 向量的减法 (1课时)2.2.3、 向量的数乘 (1课时)2.2.4、 向量的共线定理 (1课时)2.3 向量的坐标表示 3课时2.3.1、 平面向量的基本定理 (1课时)2.3.2、 平面向量的坐标运算 (2课时)2.4 向量的数量积 3课时2.5 向量的应用 1课时
2、2.1向量的概念及表示(预学案)课时:第一课时 预习时间: 年 月日 学习目标 1. 了解向量的实际背景,会用字母表示向量,理解向量的几何表示。2. 理解零向量、单位向量、共线向量、相等向量、相反向量等概念。 高考要求:B级重难点:对向量概念的理解. 课前准备 (预习教材P55 P57,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1、在现实生活中,有些量(如距离、身高、质量、 等)在取定单位后只用 就能表示,我们称之为 ,而另外一些量(如位移、速度、加速度、力、 等)必须用 和 才能表示。2、我们把 称为向量,向量常用一条 来表示, 表示向量的大小。以A为起点、B为终点的向量记为 。3、
3、 称为向量的长度(或称为 ),记作 4、 称为零向量,记作 ; 叫做单位向量.5、 叫做平行向量 叫做相等向量. 叫做共线向量.二、小试身手、轻松过关1、下列各量中哪些是向量? 浓度、年龄、面积、位移、人造卫星速度、向心力、电量、盈利、动量2、判断下列命题的真假:(1) 向量的长度和向量的长度相等.(2)向量与平行,则与方向相同.(3) 向量与平行,则与方向相反.(4) 两个有共同起点而长度相等的向量,它们的终点必相同.2.1向量的概念及表示(作业)完成时间: 年 月日一、【基础训练、锋芒初显】1、判断下列命题的真假:(1) 若与平行同向,且,则(2)由于方向不确定,故不能与任意向量平行。(3
4、) 如果=,则与长度相等。(4) 如果=,则与与的方向相同。(5) 若=,则与的方向相反。(6)若=,则与与的方向没有关系。2、关于零向量,下列说法中正确的有 (1)零向量是没有方向的。 (2)零向量的长度是0 (3) 零向量与任一向量平行 (4)零向量的方向是任意的。3、如果对于任意的向量,均有/ ,则为_二、【举一反三、能力拓展】1、 把平行于某一直线的一切向量平移到同一起点,则这些向量的终点构成的图形是_.2、 把平面上的一切单位向量归结到共同的起点,那么这些向量的终点所构成的图形是_.2.2.1向量的加法(预学案)课时:一课时 预习时间: 年 月日 学习目标 1. 掌握向量加法的定义.
5、2. 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.3.掌握向量加法的交换律和结合律,并会用他们进行向量计算. 高考要求:B级重难点:对向量概念的理解. 课前准备 (预习教材P59 P61,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1、如何求与的和?2、向量的加法: 叫做向量的加法。 规定:零向量与任一向量,都有 3、向量加法的法则:(1)三角形法则: 的方法,称为向量加法的三角形法则。(2)什么是平行四边形法则?4、向量的运算律:(用向量表示)交换律: 结合律: 二、小试身手、轻松过关1已知ABC中,D是BC的中点,则= 2、在平行四边形ABCD中,下列各式中不成立的是
6、 1) 2)3) 4)2.2.1向量的加法(作业)完成时间: 年 月日一、【基础训练、锋芒初显】1、已知正方形ABCD的边长为1,则= 2、课本P613证明:3、课本P614(作图)提示:以A点为坐标原点,北、东方向分别为轴、轴正半轴方向。二、【举一反三、能力拓展】1、当向量与_时,;当向量与_时,;当向量与_时,;当向量,不共线时,_; 同理:_。2、向量,皆为非零向量,下列说法正确的是 .1)向量与反向,且,则向量的方向与的方向相同.2)向量与反向,且,则向量方向相同.3)向量与同向,则向量与的的方向相同.4)向量与同向,则向量与的方向相同.2.2.2向量的减法(预学案)课时:一课时 预习
7、时间: 年 月日 学习目标 1. 掌握向量减法的定义,明确相反向量的意义2. 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量3.掌握向量加法的交换律和结合律,并会用他们进行向量计算 高考要求:B级重难点:对向量概念的理解 课前准备 (预习教材P61 P63,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1、向量减法是 2、若 ,则 ,记为 , 求 ,叫做向量的减法。3、预习P62 例1 了解如何得到向量的作图方法。二、小试身手、轻松过关1、在ABC中,向量可表示为 2、在菱形ABCD中,下列各式中成立的是 1) 2)3) 4)2.2.2向量的减法(作业)完成时间: 年 月日一、
8、【基础训练、锋芒初显】1、课本P631(作图)2、课本P636证明:3、化简:=_。二、【举一反三、能力拓展】1、已知ABCDEF是一个正六边形,O是它的中心,其中则= 2、一架飞机向北飞行300km后改变航向向西飞行400km,则飞行的总路程为_,两次位移和的和方向为_,大小为_。2.2.3向量的数乘(预学案)课时:一课时 预习时间: 年 月日 学习目标 1. 理解并掌握数乘的意义2. 理解并掌握数乘的运算律 高考要求:B级重难点:向量的数乘的综合运用 课前准备 (预习教材P63 P64,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1、一般地,实数与向量的积是一个 ,记作 ,它的长度和
9、方向规定如下: (1)=_;(2)当0时, 当0时, 当=时, 当=0时, 相乘,叫做向量的数乘2、数乘的运算律 (1)结合律: (2)分配率: 、 二、小试身手、轻松过关1、=_ 2、=_。3、 = _ _ 4、=_。5、=_。6、=_ 。2.2.3向量的数乘(作业)完成时间: 年 月日一、【基础训练、锋芒初显】1、课本P644(要求有图)2、课本P6453、= 二、【举一反三、能力拓展】1、点C在线段AB上,且,则。2、(2006 安徽高考 文 11) 在ABCD中, 为的中点,则= (用表示)2.2.4向量的共线定理(预学案)课时:一课时 预习时间: 年 月日 学习目标 1. 掌握两个向
10、量共线的条件,能根据条件判断两个向量是否共线2. 学会用共线向量的条件处理一些几何问题 高考要求:B级重难点:共线向量的条件 课前准备 (预习教材P64 P66,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1、如果,则称 2、一般地对于两个向量,有如下的向量共线定理如果有一个实数,使 , 那么 ;反之,如果 ,那么 .二、小试身手、轻松过关已知非零向量满足求证:向量共线.2.2.4向量的共线定理(作业)完成时间: 年 月日一、【基础训练、锋芒初显】1、课本P661证明:2、课本P662证明:3、课本P663证明:二、【举一反三、能力拓展】1、设两非零向量,不共线,且,求实数k的值。2、设
11、两非零且不共线向量,实数满足 ,试讨论的取值.2.3.1平面向量的基本定理(预学案)课时:第一课时 预习时间: 年 月日 学习目标 了解平面向量基本定理,掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法,能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达;事物之间的相互转化. 高考要求:B级 课前准备 (预习教材P68 P69,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1.平面向量的基本定理:如果,是同一平面内两个 的向量,是这一平面内的任一向量,那么有且只有一对实数使 。其中,不共线的这两个向量叫做表示这一平面内所有向量的基
12、底。,叫做这一平面内所有向量的一组_.,表示成的形式,我们称它为向量的_,当,所在直线_,这种分解也称为向量的_.二、小试身手、轻松过关1. 设是同一平面内所有向量的一组基底,则以下各组向量中,不能作为基底的是( )A. +和- B. 2-3和4-6C. +2和2+ D. +和已知是的边上的中线,若,则()( )( )( )( )2.3.1平面向量的基本定理(作业)完成时间: 年 月日一、【基础训练、锋芒初显】1. 已知不共线, =+,=4 +2,并且,共线,则下列各式正确的是( )A. =1, B. =2, C. =3, D. =42、已知是同一平面内两个不共线的向量,且+,+,如果,三点共
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 平面 向量 导学案 27
限制150内