高中数学人教版选修2-2全套教案(61页).doc
《高中数学人教版选修2-2全套教案(61页).doc》由会员分享,可在线阅读,更多相关《高中数学人教版选修2-2全套教案(61页).doc(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学人教版选修2-2全套教案-第 59 页第一章导数及其应用1变化率问题教学目标:1理解平均变化率的概念;2了解平均变化率的几何意义;3会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念教学过程:一创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等。导数是微积分的核心概念
2、之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度二新课讲授(一)问题提出问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?hto n 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是n 如果将半径r表示为体积V的函数,那么分析: , 当V从0增加到1时,气球半径增加了气球的平均膨胀率为 当V从1增加到2时,气球半径增加了气球的平均膨胀率为可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小
3、了思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少? 问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -t2t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?思考计算:和的平均速度在这段时间里,;在这段时间里,探究:计算运动员在这段时间里的平均速度,并思考以下问题:运动员在这段时间内使静止的吗?你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -t2t+10的图像,结合图形可知,所以,虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以
4、说明用平均速度不能精确描述运动员的运动状态(二)平均变化率概念:1上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率2若设, (这里看作是对于x1的一个“增量”可用x1+代替x2,同样)3 则平均变化率为思考:观察函数f(x)的图象平均变化率表示什么?f(x2)y=f(x)yy =f(x2)-f(x1)f(x1)直线AB的斜率x= x2-x1x2x1xO三典例分析例1已知函数f(x)=的图象上的一点及临近一点,则 解:, 例2 求在附近的平均变化率。解:,所以 所以在附近的平均变化率为四课堂练习1质点运动规律为,则在时间中相应的平均速度为 s(t)=3t2+t+4的规
5、律作直线运动,求在4s附近的平均变化率.3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+x,1+y)作曲线的割线,求出当x=0.1时割线的斜率.五回顾总结:1平均变化率的概念;2函数在某点处附近的平均变化率六布置作业导数与导函数的概念教学目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法; 理解导数的几何意义; 理解导函数的概念和意义;2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。教学重点: 1、导数的求解方法和过程;2
6、、导数符号的灵活运用教学难点: 1、导数概念的理解;2、导函数的理解、认识和运用教学过程:一、情境引入在前面我们解决的问题:1、求函数在点(2,4)处的切线斜率。,故斜率为4 2、直线运动的汽车速度V与时间t的关系是,求时的瞬时速度。,故斜率为4 二、知识点讲解上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。归纳:一般的,定义在区间(,)上的函数,当无限趋近于0时,无限趋近于一个固定的常数A,则称在处可导,并称A为在处的导数,记作或,上述两个问题中:(1),(2)三、几何意义:我们上述过程可以看出在处的导数就是在处的切线斜率。四、例题选讲例1、求下列函数在相应位置的导数(1)
7、, (2), (3),例2、函数满足,则当x无限趋近于0时,(1) (2) 变式:设f(x)在x=x0处可导,(3)无限趋近于1,则=_(4)无限趋近于1,则=_(5)当x无限趋近于0,所对应的常数与的关系。总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。例3、若,求和 注意分析两者之间的区别。例4:已知函数,求在处的切线。导函数的概念涉及:的对于区间(,)上任意点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。五、小结与作业1.1.2导数的概念教学目标:1了解瞬时速度、瞬时变化率的概念;2理解导数的概念,知道瞬时变化率就是导数,体会导数的
8、思想及其内涵;3会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念教学过程:一创设情景hto (一)平均变化率(二)探究:计算运动员在这段时间里的平均速度,并思考以下问题:运动员在这段时间内使静止的吗?你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -t2t+10的图像,结合图形可知,所以,虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态二新课讲授1瞬时速度我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么
9、,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:思考:当趋近于0时,平均速度有什么样的变化趋势?结论:当趋近于0时,即无论从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运动员在时的瞬时速度是为了表述方便,我们用表示“当,趋近于0时,平均速度趋近于定值”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。2 导数的概念从函数y=f(x)在x=x0处的瞬时变化率是: 我们称它为函数在出的导数,记作或,即说明:(1)导数
10、即为函数y=f(x)在x=x0处的瞬时变化率 (2),当时,所以三典例分析例1(1)求函数y=3x2在x=1处的导数.分析:先求f=y=f(x)-f()=6x+(x)2再求再求解:法一(略) 法二:(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数 解:例2(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义解:在第时和第时,原油温度的瞬时变化率就是和根据导数定义,所以 同理可得:在第时和第时,原油温度的瞬时变化率分别为和5,说明在附近,原油温度大约以的速率下降,在
11、第附近,原油温度大约以的速率上升注:一般地,反映了原油温度在时刻附近的变化情况四课堂练习 1质点运动规律为,求质点在的瞬时速度为2求曲线y=f(x)=x3在时的导数3例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义五回顾总结:1瞬时速度、瞬时变化率的概念;2导数的概念六布置作业1.1.3导数的几何意义教学目标:1了解平均变化率与割线斜率之间的关系;2理解曲线的切线的概念;3通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义教学过程:一创设情景(一)平均变化率、割线的斜率(二)瞬时速度
12、、导数我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数的几何意义是什么呢?二新课讲授(一)曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?我们发现,当点沿着曲线无限接近点P即x0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.问题:割线的斜率与切线PT的斜率有什么关系? 切线PT的斜率为多少?容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即说明:(1)设切线的倾斜角为,那么当x0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.这个概念:
13、提供了求曲线上某点切线的斜率的一种方法; 切线斜率的本质函数在处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,即 说明:求曲线在某点处的切线方程的基本步骤:求出P点的坐标;求出函数在点处的变化率 ,得到曲线在点的切线的斜率;利用点斜式求切线方程.(二)导函数:由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个
14、确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,即: 注:在不致发生混淆时,导函数也简称导数(三)函数在点处的导数、导函数、导数 之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数 3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。三典例分析例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程. (2)求函数y=3x2在点处的导数.解:(1),所以,所求切线的斜率为2,因此
15、,所求的切线方程为即(2)因为所以,所求切线的斜率为6,因此,所求的切线方程为即(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数 解:例2(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、附近的变化情况解:我们用曲线在、处的切线,刻画曲线在上述三个时刻附近的变化情况(1) 当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降(2) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减(3) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减从图3.1-3可以看出,直线的倾斜程度小于
16、直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢例3(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象根据图像,估计时,血管中药物浓度的瞬时变化率(精确到)解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值作处的切线,并在切线上去两点,如,则它的斜率为: 所以 下表给出了药物浓度瞬时变化率的估计值:药物浓度瞬时变化率0-四课堂练习1求曲线y=f(x)=x3在点处的切线; 2求曲线在点处的切
17、线五回顾总结 1曲线的切线及切线的斜率; 2导数的几何意义六布置作业几个常用函数的导数教学目标:1使学生应用由定义求导数的三个步骤推导四种常见函数、的导数公式; 2掌握并能运用这四个公式正确求函数的导数教学重点:四种常见函数、的导数公式及应用教学难点: 四种常见函数、的导数公式教学过程:一创设情景我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度那么,对于函数,如何求它的导数呢?由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们
18、将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数二新课讲授1函数的导数 根据导数定义,因为 所以函数导数表示函数图像(图3.2-1)上每一点处的切线的斜率都为0若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态2函数的导数因为, 所以函数导数表示函数图像(图3.2-2)上每一点处的切线的斜率都为1若表示路程关于时间的函数,则可以解释为某物体做瞬时速度为1的匀速运动3函数的导数因为函数导数所以表示函数图像(图3.2-3)上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当时,随着的增加,
19、函数减少得越来越慢;当时,随着的增加,函数增加得越来越快若表示路程关于时间的函数,则可以解释为某物体做变速运动,它在时刻的瞬时速度为4函数的导数因为 所以函数导数(2)推广:若,则三课堂练习:1课本P13探究12课本P13探究23求函数的导数函数导数四回顾总结五布置作业基本初等函数的导数公式及导数的运算法则教学目标:1熟练掌握基本初等函数的导数公式; 2掌握导数的四则运算法则;3能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用函数导数教学过程:一创设情景四种常见
20、函数、的导数公式及应用二新课讲授(一)基本初等函数的导数公式表函数导数(二)导数的运算法则导数运算法则1 23(2)推论: (常数与函数的积的导数,等于常数乘函数的导数)三典例分析例1假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有所以(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨例2根据基本初等函数的导数公式和导数运算法则,求下列函数的导数(1)(2)y ; (3)y x sin x
21、ln x; (4)y ;(5)y (6)y (2 x25 x 1)ex (7) y 【点评】 求导数是在定义域内实行的 求较复杂的函数积、商的导数,必须细心、耐心例3日常生活中的饮水通常是经过净化的随着水纯净度的提高,所需净化费用不断增加已知将1吨水净化到纯净度为时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)解:净化费用的瞬时变化率就是净化费用函数的导数(1)因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨(2)因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨 函数在某点处导数的大小表示函数在此点附近变化的快慢由上述计算可知,它表示纯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 学人 选修 全套 教案 61
限制150内