《随机变量及其分布习题解答(12页).doc》由会员分享,可在线阅读,更多相关《随机变量及其分布习题解答(12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-随机变量及其分布习题解答-第 11 页第二章 随机变量及其分布1、解:设公司赔付金额为,则X的可能值为;投保一年内因意外死亡:20万,概率为0.0002投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988所以的分布律为:2050P0.00020.00100.99882、一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量X的分布律解:X可以取值3,4,5,分布律为也可列为下表X: 3, 4,5P:3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,
2、作不放回抽样,以X表示取出次品的只数,(1)求X的分布律,(2)画出分布律的图形。解:任取三只,其中新含次品个数X可能为0,1,2个。Px12O再列为下表X: 0, 1, 2P: 4、进行重复独立实验,设每次成功的概率为p,失败的概率为q =1p(0pY)=P (X=1, Y=0)+P (X=2, Y=0)+P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)=P (X=1) P (Y=0) + P (X=2, Y=0)+ P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P
3、 (X=3) P (Y=2)9、有一大批产品,其验收方案如下,先做第一次检验:从中任取10件,经验收无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品,若产品的次品率为10%,求(1)这批产品经第一次检验就能接受的概率(2)需作第二次检验的概率(3)这批产品按第2次检验的标准被接受的概率(4)这批产品在第1次检验未能做决定且第二次检验时被通过的概率(5)这批产品被接受的概率解:X表示10件中次品的个数,Y表示5件中次品的个数, 由于产品总数很大,故XB(10,0.1),YB(5,0.1)(近似服从)(1)P X=0=0.9100.34
4、9(2)P X2=P X=2+ P X=1=(3)P Y=0=0.9 50.590(4)P 0X2,Y=0(0X2与 Y=2独立) = P 0X2P Y=0 =0.5810.5900.343(5)P X=0+ P 0X2,Y=0 0.349+0.343=0.69210、有甲、乙两种味道和颜色极为相似的名酒各4杯。如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。(1)某人随机地去猜,问他试验成功一次的概率是多少?(2)某人声称他通过品尝能区分两种酒。他连续试验10次,成功3次。试问他是猜对的,还是他确有区分的能力(设各次试验是相互独立的。)解:(1)P (一次成功)=(2)P (连续试验
5、10次,成功3次)= 。此概率太小,按实际推断原理,就认为他确有区分能力。11. 尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的。但每年总有一些“发明者”撰写关于用圆规和直尺将角三等分的文章。设某地区每年撰写此类文章的篇数X服从参数为6的泊松分布。求明年没有此类文章的概率。解: 12. 一电话交换台每分钟收到呼唤的次数服从参数为4的泊松分布。求(1)每分钟恰有8次呼唤的概率。(2)某一分钟的呼唤次数大于3的概率。 (1) (2)13. 某一公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔的起点无关(时间以小时计)。(1)求某一天
6、中午12时至下午3时没有收到紧急呼救的概率。(2)求某一天中午12时至下午5时至少收到1次紧急呼救的概率。解: 14、解:(1)、分钟时小时,(2)、故(小时)所以(分钟)15、解:16、解:17、解:设服从分布,其分布率为,求的分布函数,并作出其图形。解一: 01的分布函数为:18在区间上任意投掷一个质点,以表示这个质点的坐标。设这个质点落在中任意小区间内的概率与这个小区间的长度成正比例,试求的分布函数。解: 当时。是不可能事件, 当时, 而 是必然事件 则 当时,是必然事件,有19、以X表示某商店从早晨开始营业起直到第一顾客到达的等待时间(以分计),X的分布函数是求下述概率:(1)P至多3
7、分钟;(2)P 至少4分钟;(3)P3分钟至4分钟之间;(4)P至多3分钟或至少4分钟;(5)P恰好2.5分钟解:(1)P至多3分钟= P X3 = (2)P 至少4分钟 P (X 4) = (3)P3分钟至4分钟之间= P 3X4= (4)P至多3分钟或至少4分钟= P至多3分钟+P至少4分钟 (5)P恰好2.5分钟= P (X=2.5)=020、设随机变量X的分布函数为,求(1)P (X2), P 0X3, P (2X);(2)求概率密度fX (x).解:(1)P (X2)=FX (2)= ln2, P (0X3)= FX (3)FX (0)=1,(2)21、设随机变量的概率密度为(1)(
8、2)求X的分布函数F (x),并作出(2)中的f (x)与F (x)的图形。解:(1)当1x1时:当1x时:故分布函数为:解:(2)故分布函数为(2)中的f (x)与F (x)的图形如下f (x)x0F (x)21x01222、由统计物理学知,分子运动速度的绝对值服从迈克斯韦尔(Maxwell)分布,其概率密度为其中,为Boltzmann常数,为绝对温度,是分子的质量。试确定常数。解: 即当时, 当时, 或23、某种型号的电子的寿命X(以小时计)具有以下的概率密度:现有一大批此种管子(设各电子管损坏与否相互独立)。任取5只,问其中至少有2只寿命大于1500小时的概率是多少?解:一个电子管寿命大
9、于1500小时的概率为令Y表示“任取5只此种电子管中寿命大于1500小时的个数”。则,24、设顾客在某银行的窗口等待服务的时间X(以分计)服从指数分布,其概率密度为:某顾客在窗口等待服务,若超过10分钟他就离开。他一个月要到银行5次。以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律。并求P(Y1)。解:该顾客“一次等待服务未成而离去”的概率为因此 25、设K在(0,5)上服从均匀分布,求方程有实根的概率 K的分布密度为:要方程有根,就是要K满足(4K)244 (K+2)0。解不等式,得K2时,方程有实根。26、设XN(3.22)(1)求P (2X5),P (4)2,P (X3)若X
10、N(,2),则P (X)=P (2X5) =(1)(0.5) =0.84130.3085=0.5328P (42)=1P (|X|2)= 1P (2 P3)=1P (X3)=1=10.5=0.5(2)决定C使得P (X C )=P (XC)P (X C )=1P (XC )= P (XC)得P (XC )=0.5又P (XC )= C =327、某地区18岁的女青年的血压(收缩区,以mm-Hg计)服从在该地区任选一18岁女青年,测量她的血压X。求(1)P (X105),P (100x) 0.05.解:28、由某机器生产的螺栓长度(cm)服从参数为=10.05,=0.06的正态分布。规定长度在范
11、围10.050.12内为合格品,求一螺栓为不合格的概率是多少?设螺栓长度为XPX不属于(10.050.12, 10.05+0.12) =1P (10.050.12X10.05+0.12) =1 =1(2)(2) =10.97720.0228 =0.045629、一工厂生产的电子管的寿命X(以小时计)服从参数为=160,(未知)的正态分布,若要求P (120X200=0.80,允许最大为多少? P (120X200)=又对标准正态分布有(x)=1(x) 上式变为 解出 再查表,得30、解:31、解:32、解:所以为概率密度函数33、设随机变量X的分布律为: X:2, 1, 0,1,3P:, ,
12、, ,求Y=X 2的分布律 Y=X 2:(2)2 (1)2(0)2(1)2(3)2 P: 再把X 2的取值相同的合并,并按从小到大排列,就得函数Y的分布律为: Y: 0 1 4 9 P: 34、设随机变量X在(0,1)上服从均匀分布(1)求Y=eX的分布密度 X的分布密度为:Y=g (X) =eX是单调增函数又X=h (Y)=lnY,反函数存在且 = ming (0), g (1)=min(1, e)=1 maxg (0), g (1)=max(1, e)= e Y的分布密度为:(2)求Y=2lnX的概率密度。 Y= g (X)=2lnX是单调减函数又 反函数存在。且 = ming (0),
13、g (1)=min(+, 0 )=0 =maxg (0), g (1)=max(+, 0 )= + Y的分布密度为:35、设XN(0,1)(1)求Y=eX的概率密度 X的概率密度是 Y= g (X)=eX是单调增函数又X= h (Y ) = lnY 反函数存在且 = ming (), g (+)=min(0, +)=0 = maxg (), g (+)= max(0, +)= + Y的分布密度为:(2)求Y=2X2+1的概率密度。在这里,Y=2X2+1在(+,)不是单调函数,没有一般的结论可用。设Y的分布函数是FY(y),则FY ( y)=P (Yy)=P (2X2+1y)当y1时,( y)=
14、 FY ( y) =(3)求Y=| X |的概率密度。Y的分布函数为 FY ( y)=P (Yy )=P ( | X |y)当y0时:( y)= FY ( y) =36、(1)设随机变量X的概率密度为f (x),求Y = X 3的概率密度。Y=g (X )= X 3是X单调增函数,又X=h (Y ) =,反函数存在,且 = ming (), g (+)=min(0, +)= = maxg (), g (+)= max(0, +)= + Y的分布密度为: ( y)= f h ( h )| h ( y)| = (2)设随机变量X服从参数为1的指数分布,求Y=X 2的概率密度。xOy=x2y法一:
15、X的分布密度为: Y=x2是非单调函数当 x0时 y=x2 反函数是当 x0时 y=x2 & Y fY (y) = 法二: Y fY (y) =37、设X的概率密度为求Y=sin X的概率密度。FY ( y)=P (Yy) = P (sinXy)当y0时:FY ( y)=0当0y1时:FY ( y) = P (sinXy) = P (0Xarc sin y或arc sin yX)当1y时:FY ( y)=1 Y的概率密度( y )为:y0时,( y )= FY ( y) = (0 ) = 00y1时,( y )= FY ( y) =1y时,( y )= FY ( y) = = 038、设电流是一个随机变量,它均匀分布在9安11安之间。若此电流通过2欧的电阻,在其上消耗求的概率密度。 解:在上服从均匀分布 的概率密度为:的取值为 分布函数 39、某物体的温度T (oF )是一个随机变量,且有TN(98.6,2),试求()的概率密度。已知法一: T的概率密度为 又 是单调增函数。 反函数存在。 且 = ming (), g (+)=min(, +)= = maxg (), g (+)= max(, +)= + 的概率密度()为法二:根据定理:若XN(1, 1),则Y=aX+bN (a1+b, a2 2 )由于TN(98.6, 2)故 故的概率密度为:
限制150内