高二圆锥曲线知识点总结与例题(11页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高二圆锥曲线知识点总结与例题(11页).doc》由会员分享,可在线阅读,更多相关《高二圆锥曲线知识点总结与例题(11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高二圆锥曲线知识点总结与例题-第 11 页高二圆锥曲线知识点总结与例题分析一、椭圆1、椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。若为椭圆上任意一点,则有。椭圆的标准方程为:()(焦点在x轴上) 或()(焦点在y轴上)。注:以上方程中的大小,其中;在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。例如椭圆(,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。2、椭圆的性质范围:由标准方程知,说明椭圆位于直线,所围成的矩形里;对称性:椭圆关于轴、轴和原点对称。这时,坐标轴是椭圆的对称轴,原
2、点是对称中心,椭圆的对称中心叫椭圆的中心;四个顶点: ,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,且,即;离心率:椭圆的焦距与长轴的比叫椭圆的离心率。3、点与椭圆的关系点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内二、双曲线1、双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线。注意: 式中是差的绝对值,在条件下;时为双曲线的一支;时为双曲线的另一支(含的一支); 当时,表示两条射线; 当时,不表示任何图形; 两定点叫做双曲线的焦点,叫做焦距。椭圆和双
3、曲线比较:椭 圆双 曲 线定义方程焦点注意:要分清焦点的位置,由,项系数的正负决定,焦点在系数为正的坐标轴上2、双曲线的性质范围:从标准方程,看出曲线在坐标系中的范围:双曲线在两条直线的外侧。对称性:坐标轴是双曲线的对称轴,原点是对称中心,双曲线的对称中心叫做双曲线的中心。两个顶点:实轴:线段叫做双曲线的实轴,它的长等于叫做双曲线的实半轴长。虚轴:线段叫做双曲线的虚轴,它的长等于叫做双曲线的虚半轴长。 渐近线:,围成的矩形的两条对角线,称为双曲线的渐近线。双曲线渐近线为。等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式:;2)等轴双曲线的性质:(1)渐近线方程为: ;(2)渐
4、近线互相垂直(3)离心率为。3)注意到等轴双曲线的特征,则等轴双曲线可以设为: ,当时交点在轴,当时焦点在轴上。三、抛物线(1)抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。方程叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是 ;(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程图形焦点坐标准线方程
5、范围对称性轴轴轴轴顶点离心率说明:(1)焦点在一次项的坐标轴上,一次项的符号决定开口方向。(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调的几何意义:是焦点到准线的距离。四、直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是
6、必要条件。(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。五、弦长公式直线与圆锥曲线相交所得的弦长直线具有斜率,直线与圆锥曲线的两个交点坐标分别为,则它的弦长注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为,运用韦达定理来进行计算.当直线斜率不存在是,则.六、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;在双曲线中,以为中点的弦所在直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 知识点 总结 例题 11
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内