2022年高考立体几何知识点总结2.docx
《2022年高考立体几何知识点总结2.docx》由会员分享,可在线阅读,更多相关《2022年高考立体几何知识点总结2.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_一 、空间几何体高考立体几何学问点总结可编辑资料 - - - 欢迎下载精品_精品资料_(一) 空间几何体的类型1 多面体: 由如干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体: 把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.可编辑资料 - - - 欢迎下载精品_精品资料_(二) 几种空间几何体的结构特点1 、棱柱的结构特点1.1 棱柱的定义: 有两个面相互平行, 其余各面都是四边形,并且每
2、相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫做棱柱.1.2 棱柱的分类图 1-1 棱柱可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_底面是四边形底面是平行四边形侧棱垂直于底面可编辑资料 - - - 欢迎下载精品_精品资料_棱柱四棱柱平行六面体直平行可编辑资料 - - - 欢迎下载精品_精品资料_底面是矩形底面是正方形棱长都相等可编辑资料 - - - 欢迎下载精品_精品资料_六面体长方体正四棱柱正方体性质 :、侧面都是平行四边形,且各侧棱相互平行且相等. 、两底面是全等多边形且相互平行. 、平行于底面的截面和底面全等.1.3 棱柱的
3、面积和体积公式可编辑资料 - - - 欢迎下载精品_精品资料_S直棱柱侧ch ( c 是底周长, h 是高)可编辑资料 - - - 欢迎下载精品_精品资料_S 直棱柱表面= ch+ 2S 底V 棱柱= S 底 h2 、棱锥的结构特点2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(2) 正棱锥:假如有一个棱锥的底面是正多边形,并且顶点在底面的投影是底可编辑资料 - - - 欢迎下载精品_精品资料_面的中心,这样的棱锥叫做正棱锥.2.2 正棱锥的结构特点、 平行于底面的截面是与底面相像的正多边形,相像比等于顶点到截面的距离与顶点
4、究竟面的距离之比. 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比.截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的 高的立方比.、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形.可编辑资料 - - - 欢迎下载精品_精品资料_正棱锥侧面积:S正棱椎1ch2( c 为底周长,h 为斜高)P可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_体积: V棱椎1 Sh ( S 为底面积, h 为高)DC3OHAB可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_正四周体:对于棱长为 a 正四周
5、体的问题可将它补成一个边长为2 a 的正方体问题.2可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_对棱间的距离为2 a (正方体的边长)2可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_正四周体的高6 a (32l 正方体体对角线 )3可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_正四周体的体积为2 a 3 ( V12正方体1正方体4V小三棱锥V)3可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_正四
6、周体的中心究竟面与顶点的距离之比为3 、棱台的结构特点1: 3 (11l正方体体对角线 : l 62正方体体对角线 )可编辑资料 - - - 欢迎下载精品_精品资料_3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台.3.2 正棱台的结构特点(1) 各侧棱相等,各侧面都是全等的等腰梯形.(2) 正棱台的两个底面和平行于底面的截面都是正多边形.(3) 正棱台的对角面也是等腰梯形.(4) 各侧棱的延长线交于一点.4 、圆柱的结构特点4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.可编辑资料 - - - 欢迎下载精
7、品_精品资料_4.2 圆柱的性质(1) 上、下底及平行于底面的截面都是等圆.(2) 过轴的截面 轴截面是全等的矩形.4.3 圆柱的侧面绽开图:圆柱的侧面绽开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式22S 圆柱侧面= 2 rhr 为底面半径, h 为圆柱的高 S 圆柱全 = 2 r h + 2 rV 圆柱 = S 底 h = hr5、圆锥的结构特点5.1 圆锥的定义:以直角三角形的始终角边所在的直线为旋转轴, 其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特点(1) ) 平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点究竟面的距
8、离之比.(2) 轴截面是等腰三角形.可编辑资料 - - - 欢迎下载精品_精品资料_(3) 母线的平方等于底面半径与高的平方和:l2 = r2 + h2图 1-5 圆锥可编辑资料 - - - 欢迎下载精品_精品资料_5.3 圆锥的侧面绽开图:圆锥的侧面绽开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特点6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特点 圆台的上下底面和平行于底面的截面都是圆. 圆台的截面是等腰梯形. 圆台常常补成圆锥,然后利用相像三角形进行讨论.6.3 圆台的面积和体积公式22S 圆台侧 = R + rlr
9、、R 为上下底面半径 S 圆台全 = r + R + R + rl22可编辑资料 - - - 欢迎下载精品_精品资料_V 圆台 = 1/3 7 球的结构特点r+ R+ r R hh 为圆台的高 可编辑资料 - - - 欢迎下载精品_精品资料_7.1 球的定义:以半圆的直径所在的直线为旋 转轴,半圆旋转一周形成的旋转体叫做球体. 空间中,与定点距离等于定长的点的集合叫做球3可编辑资料 - - - 欢迎下载精品_精品资料_面,球面所围成的几何体称为球体.7-2 球的结构特点 球心与截面圆心的连线垂直于截面. 截面半径等于球半径与截面和球心的距离的平方差:r2 = R2 d27-3 球与其他多面体的
10、组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是: 依据题意,确定是内接仍是外切,画出立体图形. 找出多面体与球体连接的的方, 找出对球的合适的切割面, 然后做出剖面图. 将立体问题转化为平面几何中圆与多边形的问题. 留意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线.球外切正方体,球直径等于正方体的边长.7-4 球的面积和体积公式2S 球面 = 4 R R 为球半径 3V 球 = 4/3 R(三)空间几何体的表面积与体积空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和可编辑资料 - - - 欢迎下载精品_精品资料_圆柱的表面积: S2rl2r
11、 2可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_圆锥的表面积:圆台的表面积:Srlr 2Srlr 2RlR2可编辑资料 - - - 欢迎下载精品_精品资料_球的表面积: S4R2nR211可编辑资料 - - - 欢迎下载精品_精品资料_扇形的面积公式S扇形lr =r 2(其中 l 表示弧长, r 表示半径,表示弧度)可编辑资料 - - - 欢迎下载精品_精品资料_36022空间几何体的体积柱体的体积 : VS底 h可编辑资料 - - - 欢迎下载精品_精品资料_锥体的体积 : V1 Sh可编辑资料 - - - 欢迎下载精品_精品资料_底台体的
12、体积 :31V( S上3S上 S下S下 h可编辑资料 - - - 欢迎下载精品_精品资料_可编辑资料 - - - 欢迎下载精品_精品资料_球体的体积: V4R33可编辑资料 - - - 欢迎下载精品_精品资料_(四)空间几何体的三视图和直观图正视图:光线从几何体的前面对后面正投影,得到的投影图.侧视图:光线从几何体的左边向右边正投影,得到的投影图.俯视图:光线从几何体的上面对右边正投影,得到的投影图.画三视图的原就:正俯长相等、正侧高相同、俯侧宽一样注:球的三视图都是圆.长方体的三视图都是矩形直观图: 斜二测画法斜二测画法的步骤:(1) 平行于坐标轴的线依旧平行于坐标轴.(2) 平行于 y 轴
13、的线长度变半,平行于 x,z 轴的线长度不变.(3) 画法要写好用斜二测画法画出长方体的步骤: ( 1)画轴( 2)画底面( 3)画侧棱( 4)成图二 、点、直线、平面之间的关系(一)、立体几何网络图:公理 4线线平行线面平行面面平行三垂线定理线线垂直线面垂直面面垂直三垂线逆定理1、线线平行的判定:( 1)、平行于同始终线的两直线平行.( 3)、假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.( 6)、假如两个平行平面同时和第三个平面相交,那么它们的交线平行.( 12)、垂直于同一平面的两直线平行. 2、线线垂直的判定:(7) )、在平面内的一条直线,假如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考立体几何知识点总结 2022 年高 立体几何 知识点 总结
限制150内