鸡兔同笼典型例题及详细讲解(4页).doc
《鸡兔同笼典型例题及详细讲解(4页).doc》由会员分享,可在线阅读,更多相关《鸡兔同笼典型例题及详细讲解(4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-鸡兔同笼典型例题及详细讲解-第 4 页鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有21632(只)脚,但实际上有44只脚,比假设的情况多了44-3212(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。解:有兔(44-216)(4-2)=6(
2、只),有鸡16-610(只)。答:有6只兔,10只鸡。当然,我们也可以假设16只都是兔子,那么就应该有41664(只)脚,但实际上有44只脚,比假设的情况少了644420(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-22(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。有鸡(416-44)(4-2)=10(只),有兔16106(只)。由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小
3、和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。假设100人全是大和尚,那么共需馍300个,比实际多300140160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少312(个),因为160280,故小和尚有80人,大和尚有1008020(人)。答:大和尚有20人,小和尚有80人。同样,也可以假设100人都是小和尚,大家不妨自己试试。在下面的例题中,我们只给出一种假设方法。例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 典型 例题 详细 讲解
限制150内