高中数学概率和统计解答题)汇总(12页).doc
《高中数学概率和统计解答题)汇总(12页).doc》由会员分享,可在线阅读,更多相关《高中数学概率和统计解答题)汇总(12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高中数学概率和统计解答题)汇总-第 12 页概率与统计解答题1、A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为.()求一个试验组为甲类组的概率;()观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。()解:设A表示事件“一个试验组中,服用A有效的小白鼠有i只”,i=0,1,2;B表示事件“一个试验组中,服用B有效的小白鼠有i只”,i=0,1,2 依题意有 P
2、(A)=2=, P(A)=, P(B)=, P(B)=2=,所求的概率为p=P(BA)P(BA)P(BA)= 6分() x的可能取值为0,1,2,3,且 xB(3,), P(x=0)=()3=, P(x=1)=C()2=, P(x=2)=C()2=, P(x=3)=()3= x的分布列为x0123p 数学期望Ex=3= 12分2、设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计)()求方程有实根的概率;()求的分布列和数学期望;()求在先后两次出现的点数中有5的条件下,方程有实根的概率.解:(I)基本事件总数为,若使方程有实根,则,即。当时,; 当时,; 当时,
3、; 当时,; 当时,; 当时,, 目标事件个数为 因此方程 有实根的概率为(II)由题意知,则 ,故的分布列为012P的数学期望 (III)记“先后两次出现的点数中有5”为事件M,“方程 有实根” 为事件N,则, .3、如图是在竖直平面内的一个“通道游戏”图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,依次类推现有一颗小弹子从第一层的通道里向下运动记小弹子落入第层第个竖直通道(从左至右)的概率为(已知在通道的分叉处,小弹子以相同的概率落入每个通道)()求的值,并猜想的表达式(不必证明)()设小弹子落入第6层第个竖直通道得到分数为,其中,试求的分
4、布列及数学期望解:(1),2分 4分 6分(2)3219分12分4、2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是。 (1)求6名志愿者中来自北京大学、清华大学的各几人; (2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率; (3)设随机变量为在维持秩序岗位服务的北京大学志愿者的人数,求分布列及期望。解:(1)记“至少一名北京大学志愿者被分到运送矿泉水岗位”为事件A,则A的对立事件为“没有北京大学志愿者被分到运送
5、矿泉水岗位”,设有北京大学志愿者x个,1x6, 那么P(A)= ,解得x=2,即来自北京大学的志愿者有2人,来自清华大学志愿者4人; -3分(2)记清扫卫生岗位恰好北京大学、清华大学志愿者各有一人为事件E,那么P(E)=,所以清扫卫生岗位恰好北京大学、清华大学志愿者各一人的概率是;-6分(3)的所有可能值为0,1,2,P(=0)=,P(=1)=, P(=2)=,-8分所以的分布列为 -11分 -12分命题意图:本题考查了排列、组合、概率、数学期望等知识,考查了含有“至多、至少、恰好”等有关字眼问题中概率的求法以及同学们利用所学知识综合解决问题的能力。5、小白鼠被注射某种药物后,只会表现为以下三
6、种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝若出现三种症状的概率依次为现对三只小白鼠注射这种药物(I)求这三只小白鼠表现症状互不相同的概率;(II)用表示三只小白鼠共表现症状的种数,求的颁布列及数学期望解:()用表示第一只小白鼠注射药物后表现症状为兴奋、无变化、及迟钝,用表示第二只小白鼠注射药物后表现症状为兴奋、无变化、及迟钝,用表示第三只小白鼠注射药物后表现症状为兴奋、无变化、及迟钝.三只小白鼠反应互不相同的概率为 3分 5分()可能的取值为.,8分或.10分所以,的分布列是123所以,12分6、某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称
7、出它们的重量(单位:克),重量的分组区间为,. . . ,.由此得到样本的频率分布直方图,如图所示()根据频率分布直方图,求重量超过505克的产品数量;()在上述抽取的40件产品中任取2件,设为重量超过505克的产品数量,求的分布列;()从流水线上任取5件产品,估计其中恰有2件产品的重量超过505克的概率.解:()重量超过505克的产品数量是件 -2分()的所有可能取值为0,1,2 (只有当下述没做或都做错时,此步写对给1分) (以上()中的过程可省略,此过程都对但没列下表的扣1分)的分布列为012-9分(每个2分,表1分)()由()的统计数据知,抽取的40件产品中有12件产品的重量超过505
8、克,其频率为,可见从流水线上任取一件产品,其重量超过505克的概率为,令为任取的5件产品中重量超过505克的产品数,则,-11分故所求的概率为 -13分HCA1A2B1B2L1L2A37、张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,()若走L1路线,求最多遇到1次红灯的概率;()若走L2路线,求遇到红灯次数的数学期望;()按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由解:(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 概率 统计 解答 汇总 12
限制150内