数字温度计设计单片机课程设计(18页).doc
《数字温度计设计单片机课程设计(18页).doc》由会员分享,可在线阅读,更多相关《数字温度计设计单片机课程设计(18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-数字温度计设计单片机课程设计-第 14 页单片机课程设计报告 院 (系): 电气与控制工程学院 专业班级:测控技术与仪器 设计者: 设计者 指导教师:2013年7月 17日目录1基本要求11.1设计题目11.2设计任务11.3本设计应达到要求11.4扩展功能11.5设计说明书(论文)12课程设计内容22.1设计任务目的22.2设计任务要求22.3方案设计22.3.1温度采集电路的选择22.3.2单片机的选择22.3.3显示电路的取决32.3.4报警部分电路分析33重要器件及其相关参数43.1单片机STC89C5243.2温度传感器DS18B2044硬件电路设计74.1主板电路74.2显示电路
2、74.3报警参数调节电路74.4蜂鸣器报警电路74.5温度采集电路75系统软件设计85.1主程序85.2读取数据的流程图85.3温度转换命令子程序95.4 计算温度子程序105.5模式切换流程图106实际连接与最终结果11设计心得体会13参考文献15附录1:元件清单16附录2:程序清单16数字温度计设计【摘 要】:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以通过键盘设置上下报警温度当温度不在设置范围内时,可以报警。 【关键字】:DS18B20;STC89C52;四位
3、一体数码管;报警;【引 言】:随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机STC89C52RC,测温传感器使用DS18B20,用4位一体共阴数码管以串口传送数据,实现温度显示,能准确达到以上要求。
4、1基本要求1.1设计题目 数字温度计设计1.2设计任务 利用单片机和集成温度传感器设计一个可以直接显示温度值的数字温度计并要求达到一定的测量精度。1.3本设计应达到要求 硬件设计:根据任务要求,完成单片机最小系统及其扩展设计,焊接电路板,组成功能完整的样机。 软件设计:根据温度测量及显示功能要求,完成控制软件的编写与调试; 功能要求:至少利用3位数码管进行测量值的显示(也可用液晶显示器相应内容),温度测量范围:-20100;1.4扩展功能根据实际情况自由添加附加功能,如设置温度的上下限报警功能,利用语音或声光报警等。1.5设计说明书(论文) 设计说明书应表明设计思想和所使用的设计方法,主要内容
5、包括: 系统简介、整体功能说明、各功能模块说明(附图)及系统使用说明; 设计还需要改进的地方及设计的心得体会; 参考文献:包括参考书、资料、网站等,按标准格式列出(可参考教材最后的参考文献引用格式); 附录:系统总体原理图及源程序。2课程设计内容2.1设计任务目的随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。本次课程设计的目的就是通过本次课程设计使我们更加熟练单片机技术
6、的使用,将单片机理论知识融入于生产应用。使我们学有所用,学以致用!2.2设计任务要求根据设计要求,确定设计任务的总纲领:利用单片机和集成温度传感器设计一个可以直接显示温度值的数字温度计。设计要求:(1)硬件设计:根据任务要求,完成单片机最小系统及其扩展设计,焊接电路板,组成功能完整的样机。 (2)软件设计:根据温度测量及显示功能要求,完成控制软件的编写与调试;(3)功能要求:至少利用3位数码管进行测量值的显示(也可用液晶显示器相应内容),温度测量范围:-20100;(4)扩展功能:根据实际情况自由添加附加功能,如设置温度的上下限报警功能,利用语音或声光报警等。2.3方案设计因为本设计的核心就是
7、温度的采集,故而首先考虑温度的采集方案即温度采集电路的选择。 2.3.1温度采集电路的选择 (1)温度采集电路方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 (2)温度采集电路方案二 进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。从以上两种方案
8、,很容易看出,采用方案二,电路与软件设计都比较简单,传感精度也明显更高。故采用了方案二为本次数字温度计设计的大致方案。2.3.2单片机的选择选择完温度采集电路的设计,则考虑此次设计电路的核心单片机。单片机的选择主要是AT系列和STC系列的选择。依照的原则是:满足所需功能的前提下,尽量选择低成本单片机。由于AT系列51单片机是USA的产品,功能少,速度慢,RAM/ROM小,性能不够稳定。而且一些AT系列的单片机已经停产。相比STC系列单片机高性能,功能齐全,速度高,RAM/ROM大,价格低廉、下载程序方便等优点。毫无疑问。我们选择了STC系列常用的且价格较低的单片机STC89C52RC。2.3.
9、3显示电路的取决单片机确定后。主要仅剩下显示电路的设计。关于显示电路。我们采用了四位一体八段共阴数码管。符合课程设计的要求。2.3.4报警部分电路分析在测温场所我们往往需要对高、低温进行报警,而且需要根据不同情况随时调节报警温限,这就需要设计键盘电路来进行报警参数设置。根据分析需要设计三个按键的键盘,即模式切换、加键,减键。2.4系统框图 该系统可分为以下七个模块: (1)控制器:采用单片机STC89C52对采集的温度数据进行处理; (2)温度采集:采用DS18B20直接向控制器传输12位二进制数据; (3)温度显示:采用了4个LED共阴极七段数码管显示实际温度值; (4)门限设置:主要实现模
10、式切换及上下门限温度的调节; (5)报警装置:采用发光二极管和嗡鸣器进行报警,低于低门限或高于高门限均使其二极管发光嗡鸣器发出报警声音; (6)复位电路:对整个系统进行复位; (7)时钟振荡模块:为整个系统提供统一的时钟周期。图2.1总体设计方框图3重要器件及其相关参数3.1单片机STC89C52P0.0P0.7:通用I/O引脚或数据低8位地址总线复用地址;P1.0P1.7:通用I/O引脚;P2.0P2.7:通用I/O引脚或高8位地址总线复用地址;P3.0P3.7:通用I/O引脚或第二功能引脚(RxD、TxD、INT0、INT1、T0、T1、WR、RD);XTAL1、XTAL2:外接晶振输入端
11、;RST/Vpd:复位信号输入引脚/备用电源输入引脚;Vcc:接+5V电源;Vss:地端。3.2温度传感器DS18B20 (1)DS18B20内部结构框图如图3.1所示:C64 位ROM和单线接口高速缓存存储器与控制逻辑温度传感器高温触发器TH低温触发器TL配置寄存器8位CRC发生器图3.1DS18B20内部结构框图(2)DS18B20温度传感器内部高速RAM结构如图3.2所示。用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。温度 LSB温度 MSBTH用户字节1TL用户字节2配置寄存器保留保留保留CRC图3.2 (3)由表1可见,DS18B20温度转换的时间比较长,而且分辨率越
12、高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。表1 DS18B20温度转换时间表 (4)DS18B20的测温原理:器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器的脉冲输入。器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将55所对应的一个基数分别置入减法计数器、温度寄存器中,计数器和温度寄存器被预置在55所对应的一个基数值。减
13、法计数器对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器的预置值减到时,温度寄存器的值将加,减法计数器的预置将重新被装入,减法计数器重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。(5)通过单线总线端口访问 DS1820 的协议如下: 初始化 ROM 操作命令 存储器操作命令 执行/数据DS1820 需要严格的协议以确保数据的完整性。协议包括几种单线信号类型:复位脉冲、存在脉冲、写0、写1、读0
14、 和读1。所有这些信号,除存在脉冲外,都是由总线控制器发出的。和 DS1820 间的任何通讯都需要以初始化序列开始,一个复位脉冲跟着一个存在脉冲,表明DS1820 已经准备好发送和接收数据(适当的ROM 命令和存储器操作命令)。 当总线上只有一个器件时,DS18B20读温度的流程为:复位发0CCH SKIP ROM命令发44H开始转换命令延时复位发0CCHSKIP ROM命令发0BEH读存储器命令连续读出两个字节数据(即温度) 结束。(6)DS18B20温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电
15、源,其接电源与单片机连接方式如图4。另一种是寄生电源供电方式。当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD端接地。由于单线制只有一根线,因此发送接口必须是三态的。4硬件电路设计4.1主板电路系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等,如图4.1所示。图4.1中有三个独立式按键可以分别调整温度计的上下限报警设置,图中蜂鸣器可以在被测温度不在上下限范围内时,发出报警鸣叫声音。图4.1中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位
16、,这样就不用在重起单片机电源,就可以实现复位。图4.1系统电路图4.2显示电路显示电路采用的是四位一体八段共阴数码管。四位一体八段数码管最大的有点是免去了各个数码管间的复杂的连接电路。本设计中,将八段数码管的A-DP,8个段选端分别接到单片机的P00-P07管脚。1-4,4个位选端分别连接到单片机的P20-P23管脚。4.3报警参数调节电路门限中的三个按键,分别为模式切换按键、加按键、减按键;模式切换按键接P10,加按键接P11,减按键接P12。4.4蜂鸣器报警电路 报警电路中,超过高门限或者低于低门限时发光二极管被点亮蜂鸣器,其余时刻光二极管均熄灭、蜂鸣器不响;蜂鸣器报警接P14。4.5温度
17、采集电路DS18B20温度采集电路中,需要注意的是DQ上需要一个上拉电阻,一般为4.7K左右。DQ接P26。5系统软件设计 系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等5.1主程序主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图5.1所示。初始化调用显示子程序1S到?初次上电读出温度值温度计算处理显示数据刷新发温度转换开始命令NYNY 图5.1主程序流程图5.2读取数据的流程图DSl8820的主要数据元件有:64位激光Lasered R
18、OM,温度灵敏元件和非易失性温度告警触发器TH和TL。DSBl820可以从单总线获取电源,当信号线为高电平时,将能量贮存在内部电容器中;当单信号线为低电平时,将该电源断开,直到信号线变为高电平重新接上寄生(电容)电源为止。此外,还可外接5 V电源,给DSl8820供电。DSl8820的供电方式灵活,利用外接电源还可增加系统的稳定性和可靠性。图5.2为读取数据流程图。开始DS18B20的初始化启动温度转换读取温度寄存器跳过读序列号的操作跳过读序列号的操作DS18B20的初始化RET将LSB与MSB值合并为temptemp 图5.2 读取数据的流程图5.3温度转换命令子程序温度转换命令子程序主要是
19、发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。温度转换命令子程序流程图如上图,图5.3所示。发DS18B20复位命令发跳过ROM命令发温度转换开始命令 结束 图5.3温度转换命令子程序流程图5.4 计算温度子程序计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图如图5.4所示。 开始温度零下?温度值取补码置“”标志计算小数位温度BCD值 计算整数位温度BCD值 结束置“+”标志NY 图5.4计算温度子程序流程图5.5模式切换流程图开始模式键是否按下延时消抖模式值st在13间切换延时等待
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字 温度计 设计 单片机 课程设计 18
限制150内