2022年高中立体几何高考知识点 .pdf
《2022年高中立体几何高考知识点 .pdf》由会员分享,可在线阅读,更多相关《2022年高中立体几何高考知识点 .pdf(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载立体几何知识点总结1. 空间多边形 不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线. 若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的 . 平面通常用一个平行四边形来表示. 平面常用希腊字母、 或拉丁字母M 、N、P 来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面 AC. 在立体几何中,大写字母A,B,C,表示点,小写字母,a,b,c,l,m,n,表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关
2、系,例如:a)A l 点 A在直线 l 上; A点 A不在平面 内;b)l直线 l 在平面 内;c)a直线 a 不在平面 内;d)l m=A 直线 l 与直线 m相交于 A点;e)l=A 平面 与直线 l 交于 A点;f)=l 平面 与平面 相交于直线l. 2. 平面的基本性质公理 1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理 2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理 3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论 1 经过一条直线和这条直线外一点,有且只有一个平面. 推论 2
3、 经过两条相交直线,有且只有一个平面. 推论 3 经过两条平行直线,有且只有一个平面. 3. 证题方法4. 空间线面的位置关系共面平行没有公共点(1) 直线与直线相交有且只有一个公共点异面 ( 既不平行,又不相交) 直线在平面内有无数个公共点(2) 直线和平面直线不在平面内平行没有公共点 (直线在平面外 ) 相交有且只有一公共点(3) 平面与平面相交有一条公共直线( 无数个公共点) 平行没有公共点证题方法间接证法直接证法反证法同一法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 46 页学习必备欢迎下载5. 异面直线的判定证明两条直线是
4、异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 6. 线面平行与垂直的判定 (1) 两直线平行的判定定义:在同一个平面内,且没有公共点的两条直线平行. 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若 a,a,=b, 则 ab. 平行于同一直线的两直线平行,即若ab,b c, 则 ac. 垂直于同一平面的两直线平行,即若a ,b ,则 ab 两平行平面与同一个平面相交,那么两条交线平行,即若, , =b, 则 ab 如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若
5、=b,a ,a ,则 ab. (2) 两直线垂直的判定定义:若两直线成90角,则这两直线互相垂直. 一条直线与两条平行直线中的一条垂直,也必与另一条垂直. 即若 bc,a b, 则 ac 一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线. 即若 a,b,a b.三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直. 如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直. 即若 a,b , 则 ab. 三个两两垂直的平面的交线两两垂直,即若 , , , 且=a, =b, =c, 则 ab,bc,c a. (3) 直线与平面平行的判定定
6、义:若一条直线和平面没有公共点,则这直线与这个平面平行. 如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行. 即若 a,b,ab, 则 a. 两个平面平行,其中一个平面内的直线平行于另一个平面,即若 ,l,则 l . 如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行. 即若 ,l ,l,则 l . 在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若 A,B ,A、 B在 同侧,且A、B到等距,则AB . 两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若,a,a,a,则. 如果一条直线
7、与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a,b,ba,则 b. 如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面( 或在这个平面内) ,即若a b,a ,b ( 或 b) (4) 直线与平面垂直的判定定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直. 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 即若m,n ,m 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 46 页学习必备欢迎下载n=B,l m,l n, 则 l . 如果两条平行线中的一条
8、垂直于一个平面,那么另一条也垂直于同一平面.即若 l a,a , 则 l . 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若,l ,则 l . 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若,a = ,l ,l a, 则 l . 如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若 , , 且 a=,则 a. (5) 两平面平行的判定定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点. 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b,ab=P,a ,b,则 . 垂直于同一直线的两
9、平面平行. 即若 a, a, 则. 平行于同一平面的两平面平行. 即若 , , 则. 一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b,c,d,ab=P,ac,b d, 则. (6) 两平面垂直的判定定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角 a=90. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l ,l,则 . 一个平面垂直于两个平行平面中的一个,也垂直于另一个. 即若 , ,则 . 7. 直线在平面内的判定(1) 利用公理 1:一直线上不重合的两点在平面内,则这条直线在平面内. (2) 若两个
10、平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若,A,AB ,则 AB. (3) 过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若Aa,a b,A,b,则 a. (4) 过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P,P, ,P a,a ,则 a. (5) 如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a,A,Ab,b a, 则 b. 8. 存在性和唯一性定理(1) 过直线外一点与这条直线平行的直线有且只有一条;(2) 过一点与已知平面垂直的直线有且只有一条;(3)
11、过平面外一点与这个平面平行的平面有且只有一个;(4) 与两条异面直线都垂直相交的直线有且只有一条;(5) 过一点与已知直线垂直的平面有且只有一个;(6) 过平面的一条斜线且与该平面垂直的平面有且只有一个;(7) 过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8) 过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个. 9. 射影及有关性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 46 页学习必备欢迎下载(1) 点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点. (2) 直线
12、在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影. 和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线. (3) 图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影. 当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形. (4) 射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短. 10. 空间
13、中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等. 推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角 ) 相等 . 异面直线所成的角(1) 定义: a、b是两条异面直线,经过空间任意一点O ,分别引直线a a,b b, 则 a和 b所成的锐角( 或直角) 叫做异面直线a 和 b 所成的角 . (2) 取值范围: 0 90. (3) 求解方法根据定义,通过平移,找到异面直线所成的角;解含有 的三角形,求出角的大小 . 11. 直线和平面所成的角(1) 定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的
14、射影所成的锐角,叫做这条直线和这个平面所成的角. (ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角. (iii)一条直线和平面平行,或在平面内,则它们所成的角是0的角 . (2) 取值范围 0 90(3) 求解方法作出斜线在平面上的射影,找到斜线与平面所成的角. 解含 的三角形,求出其大小. 最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角. 12. 二面角及二面角的平面角(1) 半平面直线把平面分成两个部分,每一部分都叫做半平面. (2) 二面角条直线出发的两个半平面所组成的图形叫
15、做二面角. 这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成. 若两个平面相交,则以两个平面的交线为棱形成四个二面角. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 46 页学习必备欢迎下载二面角的大小用它的平面角来度量,通常认为二面角的平面角的取值范围是0 180(3) 二面角的平面角以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角. 如图, PCD是二面角 -AB- 的平面角 . 平面角 PCD的大小与顶点C在棱 AB上的位置无关. 二面角的平面角
16、具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB 平面 PCD. (ii)从二面角的平面角的一边上任意一点( 异于角的顶点)作另一面的垂线,垂足必在平面角的另一边( 或其反向延长线 )上 . (iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ,平面 PCD . 找 ( 或作 ) 二面角的平面角的主要方法. (i)定义法(ii)垂面法(iii)三垂线法( ) 根据特殊图形的性质(4) 求二面角大小的常见方法先找 ( 或作 ) 出二面角的平面角,再通过解三角形求得的值 . 利用面积射影定理S=Scos其中 S为二面角一个面内平面图形的面积,S是这个平面图形在另
17、一个面上的射影图形的面积, 为二面角的大小. 利用异面直线上两点间的距离公式求二面角的大小. 13. 空间的各种距离点到平面的距离(1) 定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2) 求点面距离常用的方法:1) 直接利用定义求找到 ( 或作出 ) 表示距离的线段;抓住线段 ( 所求距离 ) 所在三角形解之. 2) 利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离 . 3) 体积法其步骤是:在平面内选取适当三点,和已知点构成三棱锥;求出此三棱锥的体积V 和所取三点构成三角形的面积S ;由V=31Sh,
18、求出h 即为所求 . 这种方法的优点是不必作出垂线即可求点面距离. 难点在于如何构造合适的三棱锥以便于计算. 4) 转化法将点到平面的距离转化为( 平行 ) 直线与平面的距离来求. 14. 直线和平面的距离(1) 定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离. (2) 求线面距离常用的方法直接利用定义求证( 或连或作 ) 某线段为距离,然后通过解三角形计算之. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 46 页学习必备欢迎下载将线面距离转化为点面距离,然后运用解三角形或体积法求解之. 作辅助
19、垂直平面,把求线面距离转化为求点线距离. 15. 平行平面的距离(1) 定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线. 公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段. 两个平行平面的公垂线段的长度叫做这两个平行平面的距离. (2) 求平行平面距离常用的方法直接利用定义求证( 或连或作 ) 某线段为距离,然后通过解三角形计算之. 把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线( 面 ) 距离, 通过解三角形或体积法求解之. 16. 异面直线的距离(1) 定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线. 两条异面直线的公垂线在这两条异面直
20、线间的线段的长度,叫做两条异面直线的距离. 任何两条确定的异面直线都存在唯一的公垂线段. (2) 求两条异面直线的距离常用的方法定义法题目所给的条件,找出( 或作出 ) 两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长. 此法一般多用于两异面直线互相垂直的情形. 转化法为以下两种形式:线面距离面面距离等体积法最值法射影法公式法高中数学必修 2 知识点第一章空间几何体1.1 柱、锥、台、球的结构特征(略) 棱柱:棱锥:棱台:圆柱:圆锥:圆台:球:1.2 空间几何体的三视图和直观图1 三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2 画三视图的原则:长对齐、高对齐、宽相等3
21、直观图:斜二测画法4 斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 46 页学习必备欢迎下载(2).平行于 y 轴的线长度变半,平行于x,z 轴的线长度不变;(3).画法要写好。5 用斜二测画法画出长方体的步骤: (1)画轴( 2)画底面( 3)画侧棱( 4)成图1.3 空间几何体的表面积与体积(一 )空间几何体的表面积1 棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积3 圆锥的表面积2Srlr4 圆台的表面积22SrlrRlR5 球的表面积24SR6 扇形的面积公式21
22、3602n RSlr扇形(其中l表示弧长,r表示半径)(二)空间几何体的体积1 柱体的体积VSh底2 锥体的体积13VSh底3 台体的体积1)3VSSSSh下下上上(4 球体的体积343VR第二章 直线与平面的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 1 平面含义:平面是无限延展的, 无大小,无厚薄。2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2 倍长(2)平面通常用希腊字母 、等表示,如平面 、平面 等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面 ABCD 等。
23、3 三个公理:(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为AlBllAB公理 1作用:判断直线是否在平面内(2)公理 2:过不在一条直线上的三点,有且只有一个平面。符号表示为: A、B、C三点不共线有且只有一个平面 ,使 A、B、C。公理 2作用:确定一个平面的依据。补充 3个推论:推论 1:经过一条直线与直线外一点,有且只有一个平面。推论 2:经过两条平行直线,有且只有一个平面。推论 3:经过两条相交直线,有且只有一个平面。(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。222rrlS精选学习资料 - - - -
24、- - - - - 名师归纳总结 - - - - - - -第 7 页,共 46 页学习必备欢迎下载符号表示为:,plpl且公理 3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。2 公理 4:平行于同一条直线的两条直线互相平行。符号表示为:设 a、b、c 是三条直线,/abaccb强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。公理 4 作用:判断空间两条直线平行的依据。3 等角定理:空间中如
25、果两个角的两边分别对应平行,那么这两个角相等或互补。定理的推论 :如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角 )相等. 4 异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线符号表示:,ABlBlABl直线与直线 异面。5 注意点: 异面直线11ab与所成的角的大小只由它们的相互位置来确定,与选择的位置无关,为简便一般取在两直线中的一条上;两条异面直线所成的角: 000 ,90 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高中立体几何高考知识点 2022 年高 立体几何 高考 知识点
限制150内