智能电风扇控制器设计_单片机课程设计(20页).doc
《智能电风扇控制器设计_单片机课程设计(20页).doc》由会员分享,可在线阅读,更多相关《智能电风扇控制器设计_单片机课程设计(20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-智能电风扇控制器设计_单片机课程设计-第 1 页单片机课程设计设计题目:智能电风扇控制器设计neuq目 录序言一、 设计实验条件及任务.21.1、设计实验条件1.2、设计任务2二、 小直流电机调速控制系统的总体方案设计.32.1、系统总体设计.32.2、芯片选择.32.3、DAC0832芯片的主要性能指标.32.4、数字温度传感器DS18B20.3三、 系统硬件电路设计.4 3.1、AT89C52单片机最小系统.5 3.2、DAC0832与AT89C52单片机接口电路设计.6 3.3、显示电路与AT89C52单片机接口电路设计.73.4、显示电路与AT89C52单片机电路设计.8四、 系统软
2、件流程设计.7五、 调试与测试结果分析.8 5.1、实验系统连线图.85.2、程序调试,.8 5.3、实验结果分析.8六、 程序设计总结.10七、参考文献. 11附录.12 1、源程序代码.12 2、程序原理图.23序 言传统电风扇不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题,使家用电器产品
3、趋向于自动化、智能化、环保化和人性化,使得由微机控制的智能电风扇得以出现。本文介绍了一种基于AT89C52单片机的智能电风扇调速器的设计,该设计主要硬件部分包括AT89C52单片机,温度传感器ds18b20,数模转换DAC0809电路,电机驱动和数码管显示电路,系统可以实现手动调速和自动调速两种模式的切换,在自动工作模式下,系统能够能够根据环境温度实现自动调速;可以通过定时切换键和定时设置键实现系统工作定时,使得在用户需求的定时时间到后系统自动停止工作。在日常生活中,单片机得到了越来越广泛的应用,本系统采用的AT89C52单片机体积小、重量轻、性价比高,尤其适合应用于小型的自动控制系统中。系统
4、电风扇起停的自动控制,能够解决夏天人们晚上熟睡时,由于夜里温度下降而导致受凉,或者从睡梦中醒来亲自开关电风扇的问题,具有重要的现实意义。一、 设计实验条件及任务1.1、 设计实验条件单片机实验室1.2、 设计任务利用DAC0832芯片进行数/模控制,输出的电压经放大后驱动小直流电机的速度进行数字量调节,并显示运行状态DJ-XX和D/ A输出的数字量。巩固所学单片知识,熟悉试验箱的相关功能,熟练掌握Proteus仿真软件,培养系统设计的思路和科研的兴趣。实现功能如下: 系统手动模式及自动模式工作状态切换。 风速设为从高到低9个档位,可由用户通过键盘手动设定。 定时控制键实现定时时间设置,可以实现
5、10小时的长定时。 环境温度检测,并通过数码管显示,自动模式下实现自动转速控制。 当温度每降低1则电风扇风速自动下降一个档位,环境低于21度时,电风扇停止工作。 当温度每升高1则电风扇风速自动上升一个档位。环境温度到30度以上时,系统以最大风速工作。 实现数码管友好显示。二、小直流电机调速控制系统的总体设计方案2.1、系统硬件总体结构数字温度传感器电机驱动及电机执行电路DAC0832AT89C52调速调时S1键调速调时S2键LED数码管显示模式切换键K1定时功能键K2图2.1系统硬件总体框图2.2、芯片选择1、AT89C52芯片:选用该单片机作为智能电风扇控制部件,用来实现电风扇调速核心功能。
6、2、74LS245芯片:用来驱动数码管。3、74LS373芯片:锁存器,用来锁存输出的信号。4、74LS240芯片:八单线驱动器,缓冲输出的信号。5、DAC0832芯片:片选地址是FF80H,AOUT1插孔作为模拟量的输出。6、8255芯片:可编程并行I/O接口芯片,用以扩展单片机的IO口。7、LED数码显示管:用来显示电机旋转的速度是加速还是减速。8、741:运算放大器。9、9014:NPN型三极管。2.3、DAC0832的主要性能指标D/A转换的基本原理是应用电阻解码网络,将位数字量逐位转换为模拟量并求和,从而实现将位数字量转换为相应的模拟量。其性能指标为:()分辨率:相对分辨率,越大,分
7、辨率越高()线性度()转换精度()建立时间()温度系数。DAC0832引脚功能图如图2.2图2.2 数模转换DAC0832引脚功能 1、DI0DI7:8位数字信号输入端; 2、!CS:片选端;ILE: 数据锁存允许控制端,高电平有效; 3、!WR1:输入寄存器写选通控制端。当!CS=0、ILE=1、!WR1=0时,数据信号被锁存在输入寄存器中。4、!XFER:数据传送控制 5、!WR2 :DAC寄存器写选通控制端。当!XFER=0,!WR2 =0时,输入寄存器状态传入DAC寄存器中 6、IOUT1:电流输出1端,输入数字量全“1”时,IOUT1最大,输入数字量全为“0”时,IOUT1最小。 7
8、、IOUT2:D/A转换器电流输出2端,IOUT2+IOUT1=常数。 8、 RFB:外部反馈信号输入端, 内部已有反馈电阻RFB,根据需要也可外接反馈电阻。 9、VCC:电源输入端,可在+5V+15V范围内。 10、DGND:数字信号地。 11、AGND:模拟信号地2.4. 数字温度传感器DS18B20DS18B20“一线总线”数字化温度传感器支持“一线总线”接口,测量温度范围为-55+125,在-10+85范围内,精度为0.15。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。DS18B2
9、0可以程序设定912位的分辨率,精度为0.15,温度采集具有准确性、实时性。DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。如图2.3所示。图2.3数字温度传感器DS18B20引脚图DS18B20检测的温度高于一定值时,单片机引脚输出高电平,打开电风扇,当温度低于一定值时,单片机引脚输出低电平,控制电风扇停止转动。在此区间,每升高一度,风扇转速档位加一,风扇转速与档位的关系如表2.1所示:表2.1 风扇转速与档位的关系环境温度低于21.021.0-21.922.0-22.923.0-23.924.0-24.9转速
10、档位01234环境温度25.0-25.926.0-26.927.0-27.928.0-28.929.0以上转速档位56789三、系统硬件电路设计3.1、AT89C52单片机最小系统:AT89C52已包含了定时器、程序存储器、数据存储器等硬件,其硬件能符合整个控制系统的要求,不需要外接其他存储器芯片和定时器件,方便地构成一个最小系统。整个系统结构紧凑,抗干扰能力强,性价比高。图3.1为AT89C52芯片最小系统。一方面,单片机要通过I/O口中接收输入信号,另一方面要通过I/O口控制数码管的初始化、显示方式以及要显示的字符。因此,设计必须以单片机为核心,显示器为外围设备。硬件上,单片机通过电路板电
11、路与液晶显示电路相连;软件上,单片机要下载完整的程序对二者进行适时的控制。图3.1 AT89C52芯片最小系统图3.2.系统程序电路主程序CUP电路图:AT89C52单片机P0、P2口扩充电路图如图3.2:图3.2 AT89C52系统管脚扩充图3.3、DAC0832与AT89C52单片机接口电路设计实验电路使用逻辑器件实现地址译码,地址FF80H接入数模转换器DAC0832片选段,通过数模转换后的模拟量通过运放放大驱动电机驱动,其电路图如图3.3所示:图3.2 DAC0832与AT89C52单片机接口及电机控制电路3.4、显示电路与AT89C52单片机电路设计实验电路使用IO扩充芯片8255及
12、锁存芯片74LS245对六个数码管选通控制显示。显示部分电路图如图3.3所示:图3.3 数码管显示部分电路图四、系统程序流程设计4.1、系统程序流程框图如图4.1图4.1 程序流程图五、调试与测试结果分析5.1、实验系统连线图a、P3.0、P3.1、P3.2、P3.3分别连按键K1、K2、S1、S2b、DS18b20 数据线连 P3.4c、将DAC0832驱动电路AOUT接至直流电机d、将P0口接至DAC0832数字输入端e、将地址译码器电路(FF80H)接至DAC0832片选端5.2、程序调试 程序上电时,直流电机默认以中档5档工作,系统默认工作在手动模式下。数码管显示当前环境温度和电机运行
13、档位。当按下按键S1(P3.2)时,直流电机以加速转动,同时数码管显示档位速度,当速度达到最大时,继续按下键S1第5个数码管会显示“”表示系统已达到最大风速当按下按键S2(P3.2)时,直流电机以减速转动,同时数码管显示档位速度,当速度达到最小时,继续按下键S2第5个数码管会显示“”表示系统已达到最小风速。当按下系统模式控制切换键k1可以实现模式的切换,在自动模式下,数码管第一位显示“A”字样,表示工作于自动模式下,此时电机的转速由环境温度决定。并且显示环境温度和当前温度下电机运行档位。当按下定时键K2时,数码管闪烁的显示“000”,当按S1时,定时时间增加,数码管闪烁显示定时时间。按S2键时
14、,定时时间减少,同时数码管也闪烁显示定时时间。再次按下K2键后,闪烁停止,定时开始,数码管显示定时剩余时间。5.3、实验结果分析 电机运行正常时即可实现调速现象,按键的消抖使得调速现象更加明显。按键S1实现电风扇加速运行,按键S2实现电风扇减速运行。系统模式控制切换键k1可以实现模式的切换。定时键K2实现定时设定和定时确定。适当的控制按键,就可以实现所需要的效果。六、程序设计总结两周的单片机课程设计让我受益匪浅,无论从知识技能上还是团队合作方面。上课的时候的学习从来没有见过真正的单片机,只是从理论的角度去理解枯燥乏味。但在课程设计使用了单片机及其系统,能够理论联系实际的学习,开阔了眼界,提高了
15、单片机知识的理解和水平。在这次课程设计中又让我体会到了合作与团结的力量,当遇到不会或是设计不出来的地方,我们就会在QQ群里讨论或者是同学之间相互帮助。团结就是力量,无论在现在的学习中还是在以后的工作中,团结都是至关重要的,有了团结会有更多的理念、更多的思维、更多的情感。我们组的题目是智能电风扇控制器设计,基本要求是实现电机速度的控制,并且通过数码管显示出来。由于我在学院的创新实验室有过一年多的编程经验,因此在实验箱上实现基本功能并没有很大难度,基本功能实现后,我们组想到了使设计更加智能化和多功能化,于是我们加入了数字温度传感器温度采集和自动控制,以及定时功能。并通过程序设计,实现比较人性化的数
16、码管显示。在整个程序设计和电路设计调试过程中,遇到了不少问题,最终也和组员共同解决了。主要的问题有:l 仿真和实际的电路调试有一定的出入,在仿真上按键能够很好的工作,但是在实际的电路调试过程中,按键往往不大灵敏,常出现按一下,系统反应多次的问题,最后通过延时时间的调整,使得按键较好的工作。l 由于数码管采用动态显示方式,延时扫描时间的不恰当使得数码管显示出现跳动或者不稳定的问题,通过延时时间的正确设置和对整体程序的分析,使数码管的显示稳定正常。l 随着系统功能的增加,程序变的复杂,调试起来对程序的分析带来了一定的难度,最后通过功能函数的模块化使得程序更加清晰和易更改。将数字温度传感器的函数单独
17、设在一个C文件中,采用多文件编译的方式,也增加了程序的易移植性。l 程序的要完全运行正确,不仅要弄清楚电路图,尤其是各接口的接法,还要注重每个小的细节,因为往往一个很小的错误,使得程序出现一些无法预料的结果,在程序的调试过程中,我们组出现了将=错写为了=,结果当然运行不出来。单片机是很重要的一门课程,学好一门单片机,就凭这个技术这门手艺找一个好工作也不成问题。尽管我们在课堂学到的内容很有限,但在以后的学习中单片机还需要好好的深入研究和学习。七、参考文献1陈海宴. 51单片机原理及应用. 北京:北京航空航天大学出版社,2012.2郭天祥. 51单片机C语言教程. 北京:电子工业出版社,2005.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 智能 电风扇 控制器 设计 单片机 课程设计 20
限制150内