2022年八种求数列通项的方法已知递推公式求通项公式 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年八种求数列通项的方法已知递推公式求通项公式 .pdf》由会员分享,可在线阅读,更多相关《2022年八种求数列通项的方法已知递推公式求通项公式 .pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师精编优秀资料八种求数列通项公式的方法一、公式法例 1 已知数列na满足123 2nnnaa,12a,求数列na的通项公式。解:123 2nnnaa两边除以12n,得113222nnnnaa,则113222nnnnaa,故数列2nna是以1222a11为首项,以23为公差的等差数列, 由等差数列的通项公式,得31(1)22nnan,所以数列na的通项公式为31()222nnan。评注:本题解题的关键是把递推关系式123 2nnnaa转化为113222nnnnaa,说明数列2nna是等差数列,再直接利用等差数列的通项公式求出31(1)22nnan,进而求出数列na的通项公式。. 二、累加法例
2、2 已知数列na满足11211nnaana,求数列na的通项公式。解:由121nnaan得121nnaan则112322112()()()()2(1)12(2)1(221)(21 1)12(1)(2)21(1)1(1)2(1)12(1)(1)1nnnnnaaaaaaaaaannnnnnnnnnn所以数列na的通项公式为2nan。评注:本题解题的关键是把递推关系式121nnaan转化为121nnaan,进而求出11232211()()()()nnnnaaaaaaaaa,即得数列na的通项公式。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共
3、 10 页名师精编优秀资料例 3 已知数列na满足112 313nnnaaa,求数列na的通项公式。解:由12 31nnnaa得12 31nnnaa则11232211122112211()()()()(231)(231)(231)(231)32(3333 )(1)33(1 3)2(1)313331331nnnnnnnnnnnnaaaaaaaaaannnn所以31.nnan评注:本题解题的关键是把递推关系式12 31nnnaa转化为12 31nnnaa,进而求出11232211()()()()nnnnnaaaaaaaaaa, 即得数列na的通项公式。例4已知数列na满足1132 313nnnaa
4、a,求数列na的通项公式。解:132 31nnnaa两边除以13n,得111213333nnnnnaa,则111213333nnnnnaa,故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333nnnnnnnnnnnnnnnnnnnnnaaaaaaaaaaaan因此11(1 3)2(1)2113133133223nnnnnann,则21133.322nnnan精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 10 页名师精编优秀资
5、料评注:本题解题的关键是把递推关系式13231nnnaa转化为111213333nnnnnaa,进而求出112232111122321()()()()333333333nnnnnnnnnnnnaaaaaaaaa,即得数列3nna的通项公式,最后再求数列na的通项公式。三、累乘法例 5 已知数列na满足112(1)53nnnanaa,求数列na的通项公式。解:因为112(1)53nnnanaa,所以0na,则12(1)5nnnana,故1321122112211(1) (2)2 1(1)122(11)52(21)52(21)5 2(11)5 32 (1)3253325!nnnnnnnnnnn n
6、naaaaaaaaaannn nn所以数列na的通项公式为(1)12325!.n nnnan评注:本题解题的关键是把递推关系12(1)5nnnana转化为12(1)5nnnana, 进而求出13211221nnnnaaaaaaaaa,即得数列na的通项公式。例 6 已知数列na满足11231123(1)(2)nnaaaaanan, 求na的通项公式。解:因为123123(1)(2)nnaaaanan所以1123123(1)nnnaaaanana用式式得1.nnnaana则1(1)(2)nnana n精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3
7、 页,共 10 页名师精编优秀资料故11(2)nnanna所以13222122! (1)4 3.2nnnnnaaanaan naaaaa由123123(1)(2)nnaaaanan,21222naaa取得,则21aa,又知11a,则21a,代入得!1 3 4 52nnan。所以,na的通项公式为!.2nna评注:本题解题的关键是把递推关系式1(1)(2)nnanan转化为11(2)nnanna,进而求出132122nnnnaaaaaaa, 从而可得当2nna时,的表达式,最后再求出数列na的通项公式。四、待定系数法例 7已知数列na满足1123 56nnnaaa,求数列na的通项公式。解:设1
8、152(5 )nnnnaxax将123 5nnnaa代入式,得123 55225nnnnnaxax,等式两边消去2na, 得13 5525nnnxx, 两 边 除 以5n, 得352 ,1,xxx则代 入 式 得1152(5 )nnnnaa由1156510a及式得50nna,则11525nnnnaa,则数列5 nna是以1151a为首项,以2 为公比的等比数列,则152nnna,故125nnna。评注:本题解题的关键是把递推关系式123 5nnnaa转化为1152(5 )nnnnaa,从而可知数列5 nna是等比数列,进而求出数列5 nna的通项公式,最后再求出数列精选学习资料 - - - -
9、 - - - - - 名师归纳总结 - - - - - - -第 4 页,共 10 页名师精编优秀资料na的通项公式。例 8 已知数列na满足1135 241nnnaaa,求数列na的通项公式。解:设1123(2)nnnnaxyaxy将13524nnnaa代入式,得1352423(2)nnnnnaxyaxy整理得(52 )24323nnxyxy。令52343xxyy,则52xy,代入式得115 223(5 22)nnnnaa由115 221 12130a及式,得5220nna,则115223522nnnnaa,故数列5 22nna是以115 221 1213a为首项,以3 为公比的等比数列,因
10、此15 2213 3nnna,则113 3522nnna。评注:本题解题的关键是把递推关系式13524nnnaa转化为115 223(5 22)nnnnaa,从而可知数列522nna是等比数列,进而求出数列5 22nna的通项公式,最后再求数列na的通项公式。例 9 已知数列na满足21123451nnaanna,求数列na的通项公式。解:设221(1)(1)2()nnax ny nzaxnynz将212345nnaann代入式,得精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 10 页名师精编优秀资料2222345(1)(1)2()n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年八种求数列通项的方法已知递推公式求通项公式 2022 年八种求 数列 方法 已知 公式 求通项
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内