2022年初中函数知识点总复习 .pdf
《2022年初中函数知识点总复习 .pdf》由会员分享,可在线阅读,更多相关《2022年初中函数知识点总复习 .pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载初中函数知识点总复习(一)平面直角坐标系知识点归纳1、 在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、 坐标平面上的任意一点P 的坐标,都和惟一的一对有序实数对 (ba,)一一对应;其中,a为横坐标,b为纵坐标坐标;3、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点 不属于 任何象限;4、 四个象限的点的坐标具有如下特征:小结: (1)点 P(yx,)所在的象限横、纵坐标x、y的取值的正负性;(2)点 P(yx,)所在的数轴横、纵坐标x、y中必有一数为零;5、 在平面直角坐标系中,已知点P),(ba,则(1)点 P到x轴的距离为b; (2)
2、点 P 到y轴的距离为a;(3)点 P到原点 O 的距离为 PO22ba6、 平行直线上的点的坐标特征:a)在与x轴平行的直线上,所有点的纵坐标相等;点 A、B 的纵坐标都等于m;b)在与y轴平行的直线上,所有点的横坐标相等;点 C、D 的横坐标都等于n;象限横坐标x纵坐标y第一象限正正第二象限负正第三象限负负第四象限正负P(ba,)abxyO-3 -2 -1 0 1 a b 1 -1 -2 -3 P(a,b) Y x X Y A B mX Y C D nab精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 14 页学习必备欢迎下载7、
3、对称点的坐标特征:a)点 P),(nm关于x轴的对称点为),(1nmP, 即横坐标不变,纵坐标互为相反数;b)点 P),(nm关于y轴的对称点为),(2nmP, 即纵坐标不变,横坐标互为相反数;c)点 P),(nm关于原点的对称点为),(3nmP,即横、纵坐标都互为相反数;关于 x 轴对称关于 y 轴对称关于原点对称8、 两条坐标轴夹角平分线上的点的坐标的特征:a)若点 P(nm,)在第一、三象限的角平分线上,则nm,即横、纵坐标相等;b)若点 P(nm,)在第二、四象限的角平分线上,则nm,即横、纵坐标互为相反数;在第一、三象限的角平分线上在第二、四象限的角平分线上(二)一次函数知识点归纳【
4、基本要点】1、变量: 在一个变化过程中可以取不同数值的量。常量: 在一个变化过程中只能取同一数值的量。2、函数: 一般的,在一个变化过程中,如果有两个变量x 和 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量, y 是 x 的函数。注:这是课本对于函数的定义,在理解与实际运用中我们要注意以下几点:1、函数只能描述两个变量之间的关系,多一个少一个变量都是不对的;如:y=xz 中有三个变量,就不是函数;y=0 中只有一个变量,也不是函数;而y=0(x0)却是函数,因为括号中标明了自变量的取值范围;2、当自变量去每一个确定的值时因变量只
5、能取唯一确定的值相对应,反之,当因变量取每一个确定的值时自变量可以去若干个值相对应;因为这两个变量有先变与后变的问题,让后变的先取一个值,先变的就不一定只取一个值;3、我们只能说函数值是自变量的函数,或用自变量来表示函数值,如:a 是 b 的函数就说明a 是函数值, b 是自变量;用y 表示 x 就说明 y 是自变量, x 是函数值;任何函数都要标明谁是谁的函数,不能随便说一个解析式是不是函数,如:Y=x2,只能说 y 是 x 的函数,就不能说x 是 y 的函数;4、函数解析式的表示:只有函数值写在等号左边,含有自变量的式子写在等号右边;注意不能写成2y=3x-3 或 y2=3x-3 的形式;
6、5、任何函数都包含自变量的取值范围,如果没指明说明自变量的取值范围是任意实数。自变量的取值范围从以下几个方面把握:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。3、函数的图像X y P 1PnnmO X y P 2PmmnO X y P 3PmmnO nX y P mnO y P mnO X 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,
7、共 14 页学习必备欢迎下载一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象4、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。5、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。6、函数的表示方法列表法 :一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应
8、规律。解析式法 :简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法 :形象直观,但只能近似地表达两个变量之间的函数关系。7、正比例函数及性质一般地,形如y=kx(k 是常数, k0) 的函数叫做正比例函数,其中k 叫做比例系数 . 注:正比例函数一般形式y=kx (k 不为零 ) k 不为零 x 指数为 1 b 取零当 k0 时,直线 y=kx 经过三、一象限,从左向右上升,即随x 的增大 y 也增大;当k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时,向上平移;当b0,图象经过第一、三象限;k0,图象
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初中函数知识点总复习 2022 年初 函数 知识点 复习
限制150内