2022年初中数学课程标准解读与教材分析 .pdf
《2022年初中数学课程标准解读与教材分析 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学课程标准解读与教材分析 .pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学课程标准解读与教材分析数与代数开县德阳初中李晓辉一、数学课程标准解读(一)、数学课程总目标:1、知识与技能、数学思考、解决问题、情感与态度。知识与技能:在探究数与代数、空间与图形、统计与概率的实际问题过程中,掌握它们的基础知识和基本技能,并能解决简单的问题。数学思考:经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维;丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维;经历运用数据描述信息作出推断的过程,发展统计观念;经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。解决问题:初步学会
2、从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识;形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神:学会与人合作,并能与他人交流思维的过程和结果;初步形成评价与反思的意识。情感与态度:能积极参与数学学习活动,对数学有好奇心与求知欲;在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信;初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;形成实事求是的态度以及进行质疑和独立思考的习惯。以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用
3、,它们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。2、学段目标:第三学段(79 年级数与代数)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。数学思考:能对具体情境中较大的数字信息作出合理的解释和推断,能用代数式、方程、不等式、函数刻画事物间的相互关系。解决问题:能结合具体情境发现并提出数学问题。尝试从不同角度寻求解决问题的方法并
4、能有效地解决问题, 尝试评价不同方法之间的差异。体会在解决问题的过程中与他人合作的重要性。能用文字、字母或图表等清楚地表达解决问题的过程,并解释结果的合理性。通过对解决问题过程的反思,获得解决问题的经验。情感与态度:乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用。敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。体验数、符号和图形是有效地描述现实世界的重要手段、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,
5、并尊重与理解他人的见解;能从交流中获益。3、通过义务教育阶段的数学学习,学生能够具备以下素质:获得适应未来社会生活和进一步发展所必需的重要数学知识 ( 包括数学事实、数学活动经验 ) 以及基本的数学思想方法(常见的数学四大思想为:函数与方程、转化与化归、分类讨论、数形结合)和必要的应用技能;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 22 页初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;
6、具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。(二)、数学课程标准内容课程的内容有“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域。下面将对“数与代数”内容进行说明。( 一)具体目标 1 数与式(1)有理数 理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。 借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。 理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。 理解有理数的运算律,并能运用运算律简化运算。 能运用有理数的运算解决简单的问题。 能对含有较大数字的信息作出合理
7、的解释和推断。(2)实数 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。 了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某 些数的立方根,会用计算器求平方根和立方根。 了解无理数和实数的概念,知道实数与数轴上的点一一对应。 能用有理数估计一个无理数的大致范围。 了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问 题的要求对结果取近似值。 了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则 运算(不要求分母有理化 ) 。(3) 代数式 在现实情境中进一步理解用字母表示数的意义。 能分析简单问题
8、的数量关系,并用代数式表示。 能解释一些简单代数式的实际背景或几何意义。 会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值 进行计算。(4)整式与分式 了解整数指数幂的意义和基本性质,会用科学记数法表示数 (包括在计算器上表示) 。 了解整式的概念, 会进行简单的整式加、 减运算;会进行简单的整式乘法运算 ( 其中的多项式相乘仅指一次式相乘)。 会推导乘法公式:(ab)(ab)= a2b2;(ab)2 = a22ab b2,了解公式的几何背景,并能进行简单计算。 会用提公因式法、 公式法(直接用公式不超过二次) 进行因式分解(指数是正整数) 。 了解分式的概念, 会
9、利用分式的基本性质进行约分和通分,会进行简单的分式加、减、 乘、除运算。2方程与不等式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 22 页(1)方程与方程组 能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数 学模型。 经历用观察、画图或计算器等手段估计方程解的过程。 会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中 的分式不超过两个)。 理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。 能根据具体问题的实际意义,检验结果是否合理。(2)不等式与不等式组
10、 能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。 会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组 成的不等式组,并会用数轴确定解集。 能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单 的问题。3函数(1)探索具体问题中的数量关系和变化规律(2)函数 通过简单实例,了解常量、变量的意义。 能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 能结合图像对简单实际问题中的函数关系进行分析。 能确定简单的整式、 分式和简单实际问题中的函数的自变量取值范围,会求出函数值。 能用适当的函数表示法刻画某些实际问题中变
11、量之间的关系。 结合对函数关系的分析,尝试对变量的变化规律进行初步预测。(3)一次函数 结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。 会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解 其性质( k0 或 k0 时,图象的变化情况。 理解正比例函数。 能根据一次函数的图象求二元一次方程组的近似解。 能用一次函数解决实际问题。(4)反比例函数 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。 能画出反比例函数的图象,根据图象和解析表达式y=kx(k0 )探索并理解其性质(k0 或 k0 时,图象的变化)。 能用反比例函数解决
12、某些实际问题。(5)二次函数 通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 会根据公式确定图象的顶点、 开口方向和对称轴 (公式不要求记忆和推导) ,并能解决简单的实际问题。 会利用二次函数的图象求一元二次方程的近似解。(三)、新课程教学内容和要求的变化1、有理数要求加强的方面:(1)重视数轴的应用,借助数轴理解相反数、绝对值;(2)重视对乘方意义的理解;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 22 页(3)重视对有理数运算律意义的理解和运用;
13、强调明白其中的算理; (4)新增对含有较大(或较小)数字的信息作出合理的解释和推断。要求降低的方面:(1)求有理数的绝对值时 , 对绝对值符号内含字母不做要求;(2)有理数运算以三步为主。2、实数要求加强的方面:(1)了解数再一次进行扩充的意义; (2)新增用计算器求平方根和立方根,以及探索数字运算的相关规律;(3)重视实数和数轴上的点的一一对应; (4)重视用有理数估计一个无理数的大致范围。要求降低的方面:删去平方根表、立方根表。3、二次根式要求降低的方面:(1)没有最简二次根式的概念;(2)没有根式的化简;(3)课程标准要求了解二次根式的概念,理解二次根式加、减、乘、除的运算法则,主要用于
14、实数的四则运算,且明确提出不要求分母有理化。4、代数式要求加强的方面:(1)重视用字母表示数的意义,并能够用于表示具体问题中蕴涵的数量关系与规律;(2)重视一些简单代数式的实际背景或几何意义;(3)明确要求能根据特定问题查找数学公式,并代入具体的值进行计算。5、整式要求加强的方面:重视对乘法公式几何背景的了解和公式的推导。要求降低的方面:(1)整数指数幂的性质只要求了解,没有要求字母指数幂的运算:(2)多项式相乘仅指一次式相乘;(3)乘法公式只限两个平方差公式、完全平方公式:(4)整式除法只限定多项式除以单项式。6、因式分解要求降低的方面:(1)没有十字相乘法和分组分解法;(2)直接用公式不超
15、过两次,并且指数是正整数。7、分式要求加强的方面:重视分式模型思想和对分式意义的理解. 要求降低的方面:(1)最简分式的概念没有要求,没有分式的乘方;(2)因式分解十字相乘法不要求后,降低了分式化简的繁难程度。8、方程与方程组要求加强的方面:(1)重视模型思想根据具体问题中的数量关系,建立数学模型,列出方程或方程组,体会方程是刻画现实世界的一个有效的数学模型:(2)重视估算用观察、画图或计算器等手段估计方程的解;(3)明确配方法的名称及意义:(4)重视根据问题的实际意义检验结果的合理性。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 2
16、2 页要求降低的方面:(1) 没有可化为一元二次方程的分式方程,可化为一元一次的有要求 (分式不超过 2 个) ;(2)没有高次方程、根式方程、二元二次方程组:(3)没有韦达定理;(4)没有用求根法分解二次三项式。9、不等式与不等式组要求加强的方面:(1)重视对不等式模型思想的建立和对不等式意义的理解;(2)重视不等式基本性质的探索过程;(3)重视用数轴确定解集。要求降低的方面:(1)一元一次不等式组限2 个不等式;(2)对不等式的整数解没有明确要求,但解决实际问题中要用到。10、函数要求加强的方面:(1)重视函数的模型思想,并能举出函数的实例;(2)重视理解和运用图象分析实际问题中的函数关系
17、;(3)重视用多种函数表示法刻画问题情境中变量之间的关系;(4)重视函数的作用结合对函数关系的分析,尝试对变量的变化规律进行预测;(5)重视对具体问题中的数量关系和变化规律的探索。(6)重视函数与方程、不等式的联系。要求降低的方面:求自变量取值范围没有根式, 只要求确定简单的整式、 分式和简单实际问题中的函数的自变量取值范围。11、一次函数要求加强的方面:(1)重视对一次函数意义(反映均匀变化的一种数学模型)的体会结合具体情境体会一次函数的意义;(2)重视一次函数性质的探索过程根据一次函数的图象和解析表达式探索并理解其性质;(3)新增根据一次函数的图象求二元一次方程组的近似值:(4)重视用一次
18、函数解决实际问题。12、反比例函数要求加强的方面:(1)重视反比例函数性质的探索过程根据图象和解析表达式探索并理解其性质;(2)重视反比例函数在实际问题中的应用13、二次函数要求加强的方面:(1)重视根据实际问题确定函数表达式通过对实际问题情境的分析确定二次函数的表达式,体会二次函数的意义;(2)重视通过图象认识二次函数的性质;(3)新增用二次函数的图象求一元二次方程的近似解:(4)重视用二次函数解决简单的实际问题。降低的方面:( 1)没有用根的判别式研究函数性质;(2)图象的顶点和对称轴公式不要求记忆和推导:( 3)没有用待定系数法求二次函数的解析式:(4)用代数法研究函数的要求进一步降低精
19、选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 22 页二、教材分析1“ 数与代数 ” 章节安排:数与式方程函数第 1 章有理数七 (上) 第 2 章整式的加减七 (上)第 3 章一元一次方程七(上) 第 6 章平面直角坐标系七(下) 第 8 章二元一次方程组七(下) 第 9 章不等式与不等式七(下) 第 13 章实数八 (上) 第 14 章一次函数八 (上) 课题学习选择方案第 15章整式的乘除与因式分解八 (上) 第 16 章分式八 (下) 第 17章反比例函数八 (下) 第 21 章二次根式九(上)第 22 章一元二次方程九(上)
20、第 26 章二次函数九 (下) 第 28 章锐角三角函数九(下)有以下特点:(1)对代数预备知识遵循 “ 突出重点、分散安排 ” 的原则在数与代数领域,基本内容仍然是数、式、方程(组)、函数等。为了突出方程、函数等重点内容的学习, 教材对于代数式的相关内容作了分散处理。将整式的运算分成两部分, “ 整式的加减 ” 的内容单独安排一章,放在“ 有理数 ” 和“ 一元一次方程 ” 之间,作为学生学习 “ 一次”内容(式、方程、不等式、函数等)的预备知识;“ 整式的乘除与因式分解 ” 安排为另一章,放在“ 一次函数 ” 内容之后,作为学生进一步学习“ 二次” 内容的基础。这种处理,既保持了教科书对于
21、代数预备知识 “ 突出重点、分散安排 ” 的处理原则,又使得相关内容比较集中,利于教学. (2)螺旋上升地呈现重要的概念和思想,不断深化对它们的认识。新教材改变了以往代数教科书“ 先集中出方程,后集中出函数” 的做法,而是按照 “ 一次”和“ 二次” 的数量关系,使方程和函数交替出现,即按一次方程(组)、一次函数、二次方程、二次函数的顺序螺旋上升。 这样处理,一方面克服直线式发展所产生的不易理解消化的弊病,分阶段地不断地深化对方程和函数的理解;另一方面强化基本概念之间的内在联系,从函数角度提高对方程等内容的认识,“14.3 用函数观点看方程(组)与不等式” 等就是为此而特意安排的。函数内容历来
22、是初中代数的重点,也是难点。难就难在它是反映事物间运动变化关系的数学模型,是由常量数学到变量数学的一个过渡。教材在处理这部分内容时,对于如何克服这个难点也作出了很多努力。在呈现概念时,无论是正比例函数和一次函数,还是后面研究精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 22 页的反比例函数、二次函数、三角函数等,教科书都是通过大量的实例(图象的、表格的、解析式的),向学生展示不同函数所反映的运动变化的规律;在研究它们的图象和性质时,注意加强类比,突出研究方法的引导,突出“ 观察图象反映的变化规律 -用自然语言描述变化规律-用符号语言描
23、述变化规律 ” 的三步曲等等。教学中我们要注意理解教材的这种安排,使得学生对这种运动变化的数学模型有一个长时间的认识过程。不要开始就一步到位,将许多原来初三复习时的综合题目拿来处理。否则不是“ 难点分散 ” ,而是 “ 难点提前 ” 了。在八上教材中, “ 一次函数 ” 的内容适当地作了后移,这也是为了适应学生的认知规律,让学生更好地理解函数内容。(3)联系实际, 体现知识的形成和应用过程, 突出建立数学模型的思想。 新教材中方程、函数等内容均注意尽可能以实际问题为出发点和归宿,在分析和解决实际问题的过程中,建立数学模型,讨论有关概念和方法,然后再运用所学知识进一步探究新的实际问题,提高对数学
24、内容及其应用的理解,从而体现“ 实践-理论-实践” 的认识过程。例如,第3 章“ 一元一次方程 ” 分为以下四节:3.1 从算式到方程3.2 一元一次方程的讨论( 1)-移项与合并3.3 一元一次方程的讨论(2)-去括号与去分母3.4 实际问题与一元一次方程人教版七年级上册教材分析七年级上册数学共有四章内容,其中数与代数各章在内容上安排如下。(1)有理数。首先在前面两个学段学习的正数的基础上,从实例引入正数、负数的概念,这不仅是实际的需要 , 也是学习第三学段数学内容的需要;接着引进数轴、相反数、绝对值等关于有理数的一些概念,这样一方面加深对有理数(特别是负数)的认识,另一方面也为学习有理数运
25、算做准备;在此基础上,介绍有理数的加法、减法、乘法、除法和乘方运算的意义、法则和运算律,这是本章的重点,对法则的理解是难点。在本章,有理数加法与乘法都是在介绍运算法则着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律;减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算;利用计算器进行有理数的运算分散安排在相关内容中。(2)整式的加减。由实例引出单项式、多项式的概念及合并同类项、去括号法则、整式的加减。本章主要内容是整式的加减运算,合并同类项和去括号是整式加减的基础,它们是本章的重点,也是难点。突破这一难点的关键是通过必要的练习,熟练掌握运算
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初中数学课程标准解读与教材分析 2022 年初 数学课程 标准 解读 教材 分析
限制150内