2022年完整word版,人教版九年级数学上册知识点总结 .pdf
《2022年完整word版,人教版九年级数学上册知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年完整word版,人教版九年级数学上册知识点总结 .pdf(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学上册知识点总结21.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。注意一下几点: 只含有一个未知数;未知数的最高次数是2;是整式方程。知识点二一元二次方程的一般形式一般形式: ax2 + bx + c = 0(a 0). 其中,ax2是二次项, a 是二次项系数; bx 是一次项, b 是一次项系数; c 是常数项。知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。典型例题:1、已知关
2、于 x 的方程( m+3)x21m+(m-3)-1=0 是一元二次方程,求m的值。21.2 降次解一元二次方程21.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。一般地,对于形如x2=a(a 0) 的方程,根据平方根的定义可解得x1=a,x2=a. (2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m0) 形式的方程, 如果 p0,就可以利用直接开平方法。(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方精选学习资料 - - - - - - - - - 名师归纳总结 - -
3、 - - - - -第 1 页,共 31 页根有两个,它们互为相反数;零的平方根是零;负数没有平方根。(4)直接开平方法解一元二次方程的步骤是:移项;使二次项系数或含有未知数的式子的平方项的系数为1;两边直接开平方,使原方程变为两个一元二次方程;解一元一次方程,求出原方程的根。知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。配方法的一般步骤可以总结为:一移、二除、三配、四开。(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方
4、式;(4)若等号右边为非负数,直接开平方求出方程的解。21.2.2 公式法知识点一公式法解一元二次方程(1)一般地,对于一元二次方程ax2+bx+c=0(a0) ,如果 b2-4ac0,那么方程的两个根为 x=aacbb242,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。(2)一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a0)的过程。(3)公式法解一元二次方程的具体步骤:方程化为一般形式: ax2+bx+c=0(a0) ,一般 a 化为正值精选学习资料 -
5、- - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 31 页确定公式中 a,b,c的值,注意符号;求出 b2-4ac 的值;若 b2-4ac0,则把 a,b,c 和 b-4ac 的值代入公式即可求解,若b2-4ac0,则方程无实数根。知识点二一元二次方程根的判别式式子 b2-4ac 叫做方程 ax2+bx+c=0(a0) 根的判别式,通常用希腊字母表示它,即=b2-4ac. 0,方程 ax2+bx+c=0(a0) 有两个不相等的实数根一元二次方程=0,方程 ax2+bx+c=0(a0) 有两个相等的实数根根的判别式0,方程 ax2+bx+c=0(a0)无实数
6、根21.23 因式分解法知识点一因式分解法解一元二次方程(1)把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。(2)因式分解法的详细步骤:移项,将所有的项都移到左边,右边化为0;把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;令每一个因式分别为零,得到一元一次方程;解一元一次方程即可得到原方程的解。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 31 页知识点二用合适的方法解一元一次方程方法名称理论依据适用范围直接开平方法平方
7、根的意义形如 x2=p或(mx+n )2=p(p0) 配方法完全平方公式所有一元二次方程公式法配方法所有一元二次方程因式分解法当 ab=0,则 a=0 或 b=0 一边为 0,另一边易于分解成两个一次因式的积的一元二次方程。21.2.4 一元二次方程的根与系数的关系若一元二次方程 x2+px+q=0的两个根为 x1,x2, 则有 x1+x2=-p,x1x2=q. 若一元二次方程 a2x+bx+c=0(a0)有两个实数根 x1,x2, 则有 x1+x2=ab, x1x2=ac22.3 实际问题与一元二次方程知识点一列一元二次方程解应用题的一般步骤:(1)审:是指读懂题目,弄清题意,明确哪些是已知
8、量,哪些是未知量以及它们之间的等量关系。(2)设:是指设元,也就是设出未知数。(3)列:列方程是关键步骤 , 一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。(4)解:就是解方程,求出未知数的值。(5)验:是指检验方程的解是否保证实际问题有意义,符合题意。(6)答:写出答案。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 31 页知识点二列一元二次方程解应用题的几种常见类型(1)数字问题三个连续整数:若设中间的一个数为x,则另两个数分别为x-1,x+1。三个连续偶数
9、(奇数):若中间的一个数为x,则另两个数分别为x-2,x+2 。三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c ,则这个三位数是100a+10b+c. (2)增长率问题设初始量为 a,终止量为 b,平均增长率或平均降低率为x,则经过两次的增长或降低后的等量关系为 a(1x)2=b。(3)利润问题利润问题常用的相等关系式有:总利润 =总销售价 - 总成本;总利润 =单位利润总销售量;利润 =成本利润率(4)图形的面积问题根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。中考回顾1.(2017 四川绵阳中考)关于 x 的方程 2
10、x2+mx+n= 0 的两个根是 -2 和 1,则 nm的值为 (C) A.-8 B.8 C.16 D.-16 2.(2017 新疆中考 )已知关于x 的方程 x2+x-a= 0 的一个根为2,则另一个根是(A ) A.-3 B.-2 C.3 D.6 3.(2017 河南中考 )一元二次方程2x2-5x-2= 0 的根的情况是 (B ) A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.(2017 青海西宁中考)若 x1,x2是一元二次方程x2+ 3x-5= 0 的两个根 ,则错误 !未找到引用源。 x2+x1错误 !未找到引用源。的值是15. 5.(2017
11、内蒙古赤峰中考)如果关于x 的方程 x2-4x+2m=0 有两个不相等的实数根,那么 m 的取值范围是m0,即 m-错误 !未找到引用源。 ;由根与系数的关系可知 x1+x2=2m+3,所以 2m+3=m2,得 m1=- 1,m2=3,故 m=3.8.某地特产专卖店销售核桃,其进价为40 元/千克 ,如果按 60 元/千克出售 ,那么平均每天可售出100 kg.后来经过市场调查发现 ,单价每降低2 元,则平均每天的销售量可增加20 kg.若该专卖店销售这种核桃想要平均每天获利2 240 元,请回答: (1)每千克核桃应降价多少元? (2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场
12、 ,该店应按原售价的几折出售? (1)设每千克核桃应降价x 元,根据题意 ,得(60-x-40)错误 !未找到引用源。= 2 240.化简 ,得 x2-10 x+24=0.解得 x1= 4,x2=6.答:每千克核桃应降价4 元或 6 元.(2)由(1)可知每千克核桃可降价4 元或 6 元,因为要尽可能让利于顾客,所以每千克核桃应降价6 元.此时 ,售价为60-6= 54(元),所以 错误!未找到引用源。100%=90%.答:该店应按原售价的九折出售.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 31 页第 22 章二次函数知识点归纳及
13、相关典型题第一部分基础知识1. 定义:一般地,如果cbacbxaxy,(2是常数,)0a,那么y叫做x的二次函数 . 2. 二次函数2axy的性质(1)抛物线2axy的顶点是坐标原点,对称轴是y轴. (2)函数2axy的图像与a的符号关系 . 当0a时抛物线开口向上顶点为其最低点;当0a时抛物线开口向下顶点为其最高点 . (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为2axy)(0a. 3. 二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线 . 4. 二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,. 5. 二次函数由特殊到一
14、般,可分为以下几种形式:2axy;kaxy2;2hxay;khxay2;cbxaxy2. 6. 抛物线的三要素:开口方向、对称轴、顶点. a的符号决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a越大,抛物线的开口越小;a越小,抛物线的开口越大。平行于y轴(或重合)的直线记作hx. 特别地,y轴记作直线0 x. 7. 顶点决定抛物线的位置 . 几个不同的二次函数, 如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8. 求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,顶点是),(abacab4422,对称轴是直
15、线abx2. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 31 页(2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k) ,对称轴是直线hx. (3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9. 抛物线cbxaxy2中,cba,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样 . (2)b和a共同决定抛物线对称轴的位置. 由于
16、抛物线cbxaxy2的对称轴是直线abx2,故:0b时,对称轴为y轴;0ab(即a、b同号)时,对称轴在y轴左侧;0ab(即a、b异号)时,对称轴在y轴右侧, “左同右异” . (3)c的大小决定抛物线cbxaxy2与y轴交点的位置 . 当0 x时,cy,抛物线cbxaxy2与y轴有且只有一个交点( 0,c) :0c,抛物线经过原点 ; 0c, 与y轴交于正半轴; 0c, 与y轴交于负半轴 . 10. 几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0 x(y轴)(0,0)kaxy20 x(y轴)(0, k) 2hxayhx(h,0)
17、khxay2hx(h,k) cbxaxy2abx2(abacab4422,) 11. 用待定系数法求二次函数的解析式(1)一般式:cbxaxy2. 已知图像上三点或三对x、y的值,通常选择一般式 . (2)顶点式:khxay2. 已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 31 页12. 直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为 (0, c). (2)与y轴平行的直线hx与抛物线cbxax
18、y2有且只有一个交点 (h,cbhah2). (3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根 . 抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点0抛物线与x轴相交;有一个交点(顶点在x轴上)0抛物线与x轴相切;没有交点0抛物线与x轴相离. (4)平行于x轴的直线与抛物线的交点同(3)一样可能有 0 个交点、 1 个交点、 2 个交点. 当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根 . (5)一次函数0knkxy的图像l与二次函数02ac
19、bxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定: 方程组有两组不同的解时l与G有两个交点 ; 方程组只有一组解时l与G只有一个交点; 方程组无解时l与G没有交点 . (6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB444222122122121中考回顾1.(2017 天津中考 )已知抛物线y=x2-4x+ 3 与 x 轴相交于点A,B(点 A 在点 B 左侧 ),顶点为 M.平移该抛物线 ,使点 M 平移后的对应点M
20、 落在 x 轴上 ,点 B 平移后的对应点B落在 y 轴上 ,则平移后的抛物线解析式为(A) A.y=x2+ 2x+1 B.y=x2+ 2x-1 C.y=x2-2x+1 D.y=x2-2x-1 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 31 页2.(2017 四川成都中考)在平面直角坐标系xOy 中,二次函数 y=ax2+bx+c 的图象如图所示,下列说法正确的是(B) A. abc 0 B. abc0, b2-4ac 0 C. abc0, b2-4ac0, b2-4ac 0 3.(2017 内蒙古赤峰中考)如果关于x 的方程x2
21、-4x+2m=0 有两个不相等的实数根,那么 m 的取值范围是m0), 则 P(m,-m+3), M(m,-m2+2m+3), PM=-m2+ 2m+3-(-m+3)=-m2+ 3m=-错误 !未找到引用源。, PM 最大值为 错误 !未找到引用源。(3)如图 ,过点 Q 作 QG y 轴交 BD 于点 G,作 QH BD 于点 H,则 QH= 2 错误 !未找到引用源。设 Q(x,-x2+2x+3),则 G(x,-x+3), QG=|-x2+2x+3-(-x+3)|=|-x2+3x|. DOB 是等腰直角三角形, 3=45 , 2=1=45 .sin1=错误 !未找到引用源。,QG=4.得|
22、-x2+3x|=4, 当-x2+ 3x= 4 时,=9-160,方程无实数根.当-x2+ 3x=- 4 时,解得 :x1=- 1,x2= 4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3 的图象与x 轴有交点 ,则 k 的取值范围是(D) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 31 页A.k3 B.k3,且 k0C.k3 D.k3,且 k02.若点 M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=- 错误 !未找到引用源。x2+2x 上 ,则下列结论正确的是(C) A.y1y
23、2y3B.y2y1y3 C.y3y1y2D.y1y3y2解 :x=- 2 时,y1=- 错误 !未找到引用源。x2+2x=- 错误 !未找到引用源。(-2)2+ 2 (-2)=- 2-4=- 6, x=-1 时,y2=- 错误 !未找到引用源。x2+ 2x=-错误 !未找到引用源。(-1)2+ 2 (-1)=- 错误 !未找到引用源。 -2=- 2 错误 !未找到引用源。 , x=8 时,y3=- 错误 !未找到引用源。x2+ 2x=- 错误 !未找到引用源。82+2 8=- 32+16=- 16.-16- 6- 2 错误 !未找到引用源。,y3y10)的两个实数根x1,x2满足 x1+x2=
24、 4和 x1 x2= 3,则二次函数y=ax2+bx+c (a0)的图象有可能是 () 解析 :x1+x2= 4,-错误 !未找到引用源。= 4.二次函数的对称轴为x=-错误 !未找到引用源。= 2.x1 x2=3,错误 !未找到引用源。=3.当 a0 时,c0,二次函数图象交于y 轴的正半轴 .4.小明在用 “ 描点法 ” 画二次函数 y=ax2+bx+c 的图象时 ,列了如下表格 : x-2 -1 0 1 2 y-6错误 ! 未找到引用源。-4 -2错误 ! 未找到引用源。-2 -2错误 ! 未找到引用源。根据表格中的信息回答问题:该二次函数 y=ax2+bx+c 在 x=3 时,y=-4
25、. 5.若关于 x 的函数 y=kx2+2x-1 与 x 轴仅有一个公共点 ,则实数 k 的值为k=0 或 k=-1. 6.抛物线 y=-x2+bx+c 的图象如图 ,若将其向左平移 2 个单位长度 ,再向下平移 3 个单位长度 ,则平移后的解析式为. 解析:由题中图象可知 ,对称轴 x=1, 所以 - 错误!未找到引用源。 =1,即 b=2.把点(3,0)代入 y=-x2+2x+c,得 c=3.故原图象的解析式为y=-x2+2x+3,即 y=-(x-1)2+4,然后向左平移2 个单位 ,再向下平移 3 个单位 ,得y=-(x-1+2)2+4-3,即 y=-x2-2x. 答案:y=-x2-2x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年完整word版 人教版九年级数学上册知识点总结 2022 完整 word 人教版 九年级 数学 上册 知识点 总结
限制150内