《2022年导数知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年导数知识点总结 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结优秀知识点导 数知识要点1. 导数(导函数的简称)的定义:设0 x是函数)(xfy定义域的一点,如果自变量x在0 x处有增量x,则函数值y也引起相应的增量)()(00 xfxxfy;比值xxfxxfxy)()(00称为函数)(xfy在点0 x到xx0之间的平均变化率;如果极限xxfxxfxyxx)()(limlim0000存在,则称函数)(xfy在点0 x处可导,并把这个极 限 叫 做)( xfy在0 x处 的 导 数 , 记 作)(0 xf或0|xxy, 即)(0 xf=xxfxxfxyxx)()(limlim0000. 注:x是增量,我们也称为 “ 改变量 ” ,因为x可正,可负,
2、但不为零 . 已知函数)(xfy定义域为A,)(xfy的定义域为B,则A与B关系为BA. 2. 函数)(xfy在点0 x处连续与点0 x处可导的关系:函数)(xfy在点0 x处连续是)(xfy在点0 x处可导的必要不充分条件. 可以证明,如果)(xfy在点0 x处可导,那么)(xfy点0 x处连续 . 事实上,令xxx0,则0 xx相当于0 x. 导数导数的概念导数的运算导数的应用导数的几何意义、 物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 7 页名师总结优秀知识点
3、于是)()()(lim)(lim)(lim0000000 xfxfxxfxxfxfxxxx).()(0)()(limlim)()(lim)()()(lim0000000000000 xfxfxfxfxxfxxfxfxxxfxxfxxxx如果)(xfy点0 x处连续,那么)(xfy在点0 x处可导,是不成立的 . 例:|)(xxf在点00 x处连续,但在点00 x处不可导,因为xxxy|,当x0 时,1xy;当x0 时,1xy,故xyx0lim不存在 . 注:可导的奇函数函数其导函数为偶函数. 可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义:函数)(xfy在点0 x处的导数的几何意义就
4、是曲线)(xfy在点)(,(0 xfx处的切线的斜率,也就是说,曲线)(xfy在点 P)(,(0 xfx处的切线的斜率是)(0 xf,切线方程为).)(00 xxxfyy4、几种常见的函数导数:0C(C为常数)1)(nnnxx(Rn)xxc o s)( s i nxxs i n)( c o sxx1)(lnexxaal o g1)( l o gxxee)(aaaxxln)(5. 求导数的四则运算法则:)(vuvu)(.)()()(.)()(2121xfxfxfyxfxfxfynn)()(cvcvvccvuvvuuv(c为常数))0(2vvuvvuvu注:vu,必须是可导函数 . 若两个函数可导
5、,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设xxxf2sin2)(,xxxg2cos)(,则)(),(xgxf在0 x处均不可导,但它们和)()(xgxfxxcossin在0 x处均可导 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 7 页名师总结优秀知识点6. 复合函数的求导法则:)()()(xufxfx或xuxuyy复合函数的求导法则可推广到多个中间变量的情形. 7. 函数单调性:函数单调性的判定方法: 设函数)(xfy在某个区间内可导, 如果)(xf0,则)(xfy为增函数
6、;如果)(xf0,则)(xfy为减函数 . 常数的判定方法;如果函数)(xfy在区间I内恒有)(xf=0,则)(xfy为常数 . 注:0)(xf是 f(x)递增的充分条件, 但不是必要条件, 如32xy在),(上并不是都有0)(xf,有一个点例外即x=0 时 f(x) = 0,同样0)(xf是 f(x)递减的充分非必要条件 . 一般地, 如果 f(x)在某区间内有限个点处为零,在其余各点均为正 (或负),那么 f(x)在该区间上仍旧是单调增加(或单调减少)的. 8. 极值的判别方法: (极值是在0 x附近所有的点,都有)(xf)(0 xf,则)(0 xf是函数)(xf的极大值,极小值同理)当函
7、数)(xf在点0 x处连续时,如果在0 x附近的左侧)(xf0,右侧)(xf0,那么)(0 xf是极大值;如果在0 x附近的左侧)(xf0,右侧)(xf0,那么)(0 xf是极小值 . 也就是说0 x是极值点的充分条件是0 x点两侧导数异号,而不是)(xf=0. 此外,函数不可导的点也可能是函数的极值点. 当然,极值是一个局部概念, 极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同). 注: 若点0 x是可导函数)(xf的极值点,则)(xf=0. 但反过来不一定成立 . 对于可导函数,其一点0 x是极值点的必要条件是若函数在该点可导,则导数值为零 . 例如:函数3
8、)(xxfy,0 x使)(xf=0,但0 x不是极值点 . 例如:函数|)(xxfy,在点0 x处不可导,但点0 x是函数的极小值点 . 9. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较 . 注:函数的极值点一定有意义. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 7 页名师总结优秀知识点导数练习一、选择题1设函数( )f x在R上可导 , 其导函数( )fx, 且函数( )f x在2x处取得极小值 ,则函数( )yxfx的图象可能是2设 a0,b0,e 是自然对数的底数()A若 ea+2a=
9、eb+3b,则 ab B若 ea+2a=eb+3b,则 ab D 若 ea-2a=eb-3b, 则 a0,b0. ()A若2223abab, 则 ab B若2223abab, 则 ab D若2223abab, 则 a0. 17已知函数3211( )(0)32af xxxaxa a(I) 求函数)(xf的单调区间 ; (II)若函数)(xf在区间( 2,0)内恰有两个零点 , 求a的取值范围 ; (III)当1a时, 设函数)(xf在区间3,tt上的最大值为( )M t, 最小值为( )m t, 记( )( )( )g tM tm t, 求函数( )g t在区间 1, 3上的最小值 . 18设函数( )(, ,)nnfxxbxcnNb cR(1) 设2n,1,1bc, 证明:( )nfx在区间1,12内存在唯一的零点 ; (2) 设 n 为偶数 ,( 1)1f,(1)1f, 求 b+3c的最小值和最大值 ; 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 7 页名师总结优秀知识点精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 7 页
限制150内