2022年集合、函数说课稿 .pdf
《2022年集合、函数说课稿 .pdf》由会员分享,可在线阅读,更多相关《2022年集合、函数说课稿 .pdf(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、集合的含义与表示一. 教学目标: l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素确实定性. 互异性 . 无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力. 2. 过程与方法 (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3. 情感 . 态度与价值观使学生感受到学习集合的必要性,增强学习的积极性. 重点:集合的含义与表示方法. 难点:表示法的恰当选择. 三. 学法与教学用具 1. 学法: 学生通过阅读教材,自主学习 .
2、思考 . 交流 . 讨论和概括, 从而更好地完成本节课的教学目标 . 2. 教学用具:投影仪. 四. 教学思路 (一) 创设情景,揭示课题 1教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆. 举例和互相交流. 与此同时,教师对学生的活动给予评价. 2. 接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容. 二研探新知 1教师利用多媒体设备向学生投影出下面9 个实例: (1)1 20 以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形; (5)海南省在2004 年 9 月之前建成的所有
3、立交桥;(6) 到一个角的两边距离相等的所有的点; (7)方程2560 xx的所有实数根; (8)不等式30 x的所有解; (9)国兴中学2004 年 9 月入学的高一学生的全体. 2教师组织学生分组讨论:这9 个实例的共同特征是什么? 3. 每个小组选出位同学发表本组的讨论结果,在此基础上, 师生共同概括出9个实例的特征,并给出集合的含义. 一般地,指定的某些对象的全体称为集合( 简称为集 ). 集合中的每个对象叫作这个集合的元素 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 24 页 4.教师指出:集合常用大写字母A,B,C,
4、D,表示,元素常用小写字母, , ,a b c d表示 . (三) 质疑答辩,排难解惑,发展思维 1教师引导学生阅读教材中的相关内容,思考: 集合中元素有什么特点?并注意个别辅导,解答学生疑难 . 使学生明确集合元素的三大特性,即: 确定性 . 互异性和无序性. 只要构成两个集合的元素是一样的, 我们就称这两个集合相等. 2教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由: (1)大于 3 小于 11 的偶数; (2)我国的小河流 . 让学生充分发表自己的建解. 3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的
5、评价. 4.教师提出问题,让学生思考 (1)如果用 A表示高 (3) 班全体学生组成的集合,用a表示高一 (3) 班的一位同学,b是高一 (4) 班的一位同学, 那么,a b与集合 A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于. 如果a是集合 A的元素,就说a属于集合A,记作aA. 如果a不是集合A的元素,就说a不属于集合A,记作aA. (2)如果用 A表示“所有的安理会常任理事国”组成的集合, 则中国 . 日本与集合A的关系分别是什么 ?请用数学符号分别表示 (3)让学生完成教材第6 页练习第1题 . 5.组第 1 题. 6. 教师引导学生阅读教材中的相关内容,并思
6、考. 讨论以下问题: (1)要表示一个集合共有几种方式? (2)试比较自然语言. 列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么? (3)如何根据问题选择适当的集合表示法? 使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。( 四) 稳固深化,反馈矫正教师投影学习:(1) 用自然语言描述集合1,3,5,7,9 ; (2) 用例举法表示集合|18AxNx (3)试选择适当的方法表示以下集合:教材第6 页练习第2 题. ( 五) 归纳整理,整体认识在师生互动中,让学生了解或体会下例问题: 1本节课我们学习过哪些知识内容? 2你认为学习集合有什么意义? 3选择集合的表示
7、法时应注意些什么? (六) 承上启下,留下悬念 1课后书面作业:第13 页习题组第4 题. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 24 页2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材. 集合间的基本关系一. 教学目标 : 1知识与技能(1) 了解集合之间包含与相等的含义,能识别给定集合的子集。(2) 理解子集 . 真子集的概念。(3) 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用. 2. 过程与方法让学生通过观察身边的实例,发现集合间的基本
8、关系,体验其现实意义. 3. 情感 . 态度与价值观 (1)树立数形结合的思想 (2)体会类比对发现新结论的作用. 二. 教学重点 . 难点重点:集合间的包含与相等关系,子集与其子集的概念. 难点:难点是属于关系与包含关系的区别三. 学法与教学用具1. 学法:让学生通过观察. 类比 . 思考 . 交流 . 讨论,发现集合间的基本关系. 2.学用具:投影仪. () 创设情景,揭示课题问题 l :实数有相等.大小关系,如5=5,57,5 3 等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。而是继续引导学生;欲知谁正确,让我们一起来观察 . 研探 . (
9、 二) 研探新知投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?11,2,3,1,2,3,4,5AB; (2)设 A为国兴中学高一(3) 班男生的全体组成的集合,B为这个班学生的全体组成的集合; (3)设|,|;Cx xDx x是两条边相等的三角形是等腰三角形 (4)2,4,6,6,4,2EF. 组织学生充分讨论. 交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系: 一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A为 B的子集 . 记作:()ABBA或读作: A含于 B( 或 B包含
10、 A). 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 24 页如果两个集合所含的元素完全相同,那么我们称这两个集合相等. 教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处, 强化学生对符号所表示意义的理解。并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。如图 l 和图 2 分别是表示问题 2 中实例 1 和实例 3 的 Venn图. 图 1 图 2 投影问题3:与实数中的结论“假设,abbaab且则”相类比,在集合中,你能得出什么结论? 教师引导学生
11、通过类比,思考得出结论: 假设,ABBAAB且则. 问题 4:请同学们举出几个具有包含关系. 相等关系的集合实例,并用Venn图表示 . 学生主动发言,教师给予评价. (三) 学生自主学习,阅读理解然后教师引导学生阅读教材第7 页中的相关内容,并思考答复下例问题: (1)集合 A是集合 B的真子集的含义是什么?什么叫空集 ? (2)集合 A是集合 B的真子集与集合A是集合 B的子集之间有什么区别? (3)0,0 与三者之间有什么关系? (4)包含关系 aA与属于关系aA正义有什么区别?试结合实例作出解释. (5)空集是任何集合的子集吗?空集是任何集合的真子集吗? (6)能否说任何一人集合是它本
12、身的子集,即AA? (7)对于集合A,B, C,D,如果 AB,BC,那么集合A与 C有什么关系 ? 教师巡视指导, 解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法. (四) 稳固深化,发展思维 1. 学生在教师的引导启发下完成以下两道例题:例 1某工厂生产的产品在质量和长度上都合格时,该产品才合格。假设用A表示合格产品,B表示质量合格的产品的集合,C 表示长度合格的产品的集合则以下包含关系哪些成立?,AB BA AC CA试用 Venn图表示这三个集合的关系。例 2 写出集合 0 , 1,2)的所有子集,并指出哪些是它的真子集. 2. 学生做教材第8 页的练习第l 3 题,
13、教师及时检查反馈。强调能确定是真子集关系的最好写真子集,而不写子集. ( 五) 归纳整理,整体认识 1请学生回忆本节课所学过的知识内容有建些,所涉及到的主要数学思想方法又那些. 2. 在本节课的学习过程中,还有那些不太明白的地方, 请向老师提出. ( 六) 布置作业B AB精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 24 页第 13 页习题组第 5 题. 集合的基本运算一. 教学目标: 1. 知识与技能 (1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集. (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补
14、集. (3)能使用 Venn图表达集合的运算,体会直观图示对理解抽象概念的作用. 2. 过程与方法学生通过观察和类比,借助Venn图理解集合的基本运算. 3. 情感 . 态度与价值观 (1)进一步树立数形结合的思想. (2)进一步体会类比的作用. (3)感受集合作为一种语言,在表示数学内容时的简洁和准确. 重点:交集与并集,全集与补集的概念. 难点:理解交集与并集的概念. 符号之间的区别与联系 1 . 学法:学生借助Venn图,通过观察 . 类比 . 思考 . 交流和讨论等,理解集合的基本运算. 2 . 教学用具:投影仪. 四. 教学思路( 一) 创设情景,揭示课题问题 1:我们知道,实数有加
15、法运算。类比实数的加法运算,集合是否也可以“相加”呢? 请同学们考察以下各个集合,你能说出集合C与集合 A. B 之间的关系吗? (1)1,3,5,2,4,6,1,2,3,4,5,6;ABC(2)|,|,|Ax xBx xCx x是理数是无理数是实数引导学生通过观察,类比. 思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。 (二) 研探新知般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合 A与 B的并集 . 记作: AB. 读作: A并 B. 其含义用符号表示为:|,ABx xAxB或用 Venn 图表示如下:B A 精选学习资料 - - - - -
16、- - - - 名师归纳总结 - - - - - - -第 5 页,共 24 页请同学们用并集运算符号表示问题1 中 A,B,C三者之间的关系. 练习 . 检查和反馈 (1)设 A=4,5,6, 8) ,B=3,5,7,8) ,求 AB. (2)设集合 A | 12,|13,.AxxBxxAB集合求让学生独立完成后,教师通过检查,进行反馈,并强调:1在求两个集合的并集时,它们的公共元素在并集中只能出现一次. (2)对于表示不等式解集的集合的运算,可借助数轴解题. 1思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A. B与集合 C之间有什么关系?2
17、,4,6,8,10,3,5,8,12,8;ABC|20049.Ax x是国兴中学年 月入学的高一年级女同学B=x|x是国兴中学2004 年 9 月入学的高一年级同学, C=x|x是国兴中学2004 年 9 月入学的高一年级女同学. 教师组织学生思考. 讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与 B的交集 . 记作: AB. 读作: A交 B 其含义用符号表示为:|,.ABx xAxB且接着教师要求学生用Venn图表示交集运算. 2练习 . 检查和反馈设平面内直线1l上点的集合为1L, 直线1l上点的集合为2L, 试用集合的运算表示1
18、l的位置关系 . 学校里开运动会,设A=x|x是参加一百米跑的同学,B=x|x是参加二百米跑的同学 ,C=x|x是参加四百米跑的同学 ,学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算AB与 AC的含义 . 学生独立练习,教师检查,作个别指导. 并对学生中存在的问题进行反馈和纠正. 三学生自主学习,阅读理解1教师引导学生阅读教材第1112 页中有关补集的内容,并思考答复下例问题:A B 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 24 页1什么叫全集?2补集的含义是什么?用符号如何表
19、示它的含义?用Venn图又表示?3已知集合|38,RAxxA求. 4 设 S=x|x是至少有一组对边平行的四边形 , A=x|x是平行四边形 , B=x|x是菱形 ,C=x|x是矩形 ,求,ASBCBA. 在学生阅读 . 思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生答复上述问题,并及时给予评价. 四归纳整理,整体认识1通过对集合的学习,同学对集合这种语言有什么感受?2并集 . 交集和补集这三种集合运算有什么区别?五作业1课外思考:对于集合的基本运算,你能得出哪些运算规律?2请你举出现实生活中的一个实例,并说明其并集. 交集和补集的现实含义. 3书面作业:教材第14 页习题组第
20、7 题和 B组第 4 题. 函数的概念一、教学目标1、 知识与技能:函数是描述客观世界变化规律的重要数学模型高中阶段不仅把函数看成变量之间的依赖关系, 同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识2、过程与方法:1通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2了解构成函数的要素;3会求一些简单函数的定义域和值域;4能够正确使用“区间”的符号表示某些函数的定义域;3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。二、教学重点与难点:重点:理解函数的模
21、型化思想, 用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 . 2、教学用具:投影仪 . 四、教学思路一创设情景,揭示课题1、复习初中所学函数的概念,强调函数的模型化思想;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 24 页2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:1炮弹的射高与时间的变化关系问题;2南极臭氧空洞面积与时间的变化关系问题;3“八五”计划以来我国城镇居民的
22、恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系二研探新知1、函数的有关概念1函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数 x,在集合 B 中都有唯一确定的数f(x)和它对应,那么就称f:AB 为从集合 A 到集合 B的一个函数 function 记作:y=f(x),xA其中, x 叫做自变量, x 的取值范围A 叫做函数的定义域domain;与 x 的值相对应的 y 值叫做
23、函数值,函数值的集合 f(x)| xA 叫做函数的值域range注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的 f(x)表示与 x 对应的函数值,一个数,而不是f 乘 x2构成函数的三要素是什么?定义域、对应关系和值域3区间的概念区间的分类:开区间、闭区间、半开半闭区间;无穷区间;区间的数轴表示4初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y=ax+b (a 0) y=ax2+bx+c (a0) y=xk(k0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。师:归纳总结三质疑答辩,排难解惑,
24、发展思维。1、如何求函数的定义域例 1:已知函数f (x) = 3x+21x1求函数的定义域;2求 f 3, f (32)的值;3当 a 0 时,求 fa,f(a1)的值 . 分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式 y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式解:略精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 24 页例 2、设一个矩形周长为80,其中一边长为x,求它的面积关于x 的函数的解析式,并写出定义域
25、 . 分析:由题意知,另一边长为2280 x,且边长为正数,所以0 x40. 所以 s=8022xx= 40 xx0 x40引导学生小结几类函数的定义域:1如果 f(x)是整式,那么函数的定义域是实数集R . 2如果 f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合. 3如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合 . 4如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.即求各集合的交集5满足实际问题有意义. 稳固练习:课本P22第 1 2、如何判断两个函数是否为同一函数例 3、以下函数中哪个与函数y=x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年集合、函数说课稿 2022 集合 函数 说课稿
限制150内