2022年开发区七年级数学集体备课教案 .pdf
《2022年开发区七年级数学集体备课教案 .pdf》由会员分享,可在线阅读,更多相关《2022年开发区七年级数学集体备课教案 .pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师精编优秀教案. 开发区七年级数学集体备课教案课题9.6 乘法公式再认识因式分解(二)课 型新授课时1 整合时间2012-2-7 主备人刘爱芳授课人授课时间教 学目 标1、使学生进一步理解因式分解的意义。2、使学生理解平方差公式的意义,弄清公式的形式和特征。3、会运用平方差公式分解因式。4、通过对比整式乘法和分解因式的关系,进一步发展学生的逆向思维能力。5、感受整式乘法和分解因式矛盾的对立统一观点。6、培养学生积极主动参与探索的意识以及观察能力。7、感悟换元的思想方法。重 点1、理解平方差公式的意义,弄清公式的形式和特征。2. 会运用平方差公式对某些多项式进行分解因式难 点1、理解平方差公式
2、的意义,弄清公式的形式和特征。2. 会运用平方差公式对某些多项式进行分解因式突 破策 略课 前准 备教 学 设 计 详 案二次备课(一)设置情景:情景 1:小组讨论: 9921 是 100的整数倍吗?你是怎样想的?1. 判断某个数是否是另一个数的整数倍可以怎么判断?如:12 是 3 的整数倍吗? (学生知道就是把12 分解因数。 ) 2. 类似地要判断 9921 是 100 的整数倍呢?也可以想到尝试分解。3.a21 可以写成( a+1)(a1) 吗?情景 2:计算图中的阴影部分面积(用a、b 的代数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第
3、1 页,共 13 页名师精编优秀教案式表示)问题一:整体计算可以怎样表示?问题二:分割成如图两部分可以怎样计算?问题三:比较两种计算的结果你有什么发现?说明:学生可能先分割再整体得出: (a+b)(a b)=a2b2 (1)也有的是先整体再分割得出 a2b2=(a+b)(ab) (2)两种形式加以比较进一步明确整式乘法和因式分解的关系。思考:1. 对于( 1)式从左边到右边的变形叫什么?2. 对于( 2)式从左边到右边的变形叫什么?3. 我们已经学习提公因式法分解因式。在(2)式的左边有公因式吗?但它写成右边的形式是分解因式吗?可见,没有公因式的某些多项式也可以用别的方法分解。(二)平方差公式
4、的特征辨析:把乘法公式(a+b)(a b)=a2 b2反过来得:a2b2=(a+b)(a b) 议一议 :下列多项式可以用平方差公式分解吗?(1)x2y2(2)x2+y2(3)x2y2(4)x2+y2(5)64a2(6)4x29y2 1. 左边特征是:二项式,每项都是平方的形式,两项的符号相反。2. 右边特征是:两个二项式的积,一个是左边两项的底数之和,另一个是这两个底数之差。3. 在乘法公式中,平方差是指计算的结果,在分解因式时,平方差是指要分解的多项式。(三)例题教学例 1 把下列多项式分解因式:(1) 3625x2 (2) 16a29b2精选学习资料 - - - - - - - - -
5、名师归纳总结 - - - - - - -第 2 页,共 13 页名师精编优秀教案解: 36 25x2=62(5x)2 =(6+5x)(6 5x) 16a29b2=(4a)2(3b)2 =(4a+3b)(4a 3b) 例 2 如图,求圆环形绿化区的面积。解: 352152=(352152) =(35+15)(35 15)=5020=1000(m2) 这个绿化区的面积是1000m2例 3 把下列多项式分解因式:1. (x+p)2(x+q)2 2. 9(a+b)24(ab)2(四)练习1. 下列分解因式是否正确:(1)x2y2=(x+y)(x y) (2)925a2=(3+25a)(3+25b) (
6、3)4a2+9b2=(2a+3b)( 2a3b) 2. 把下列各式分解因式:(1) 36 x2 (2) a291b2(3) x216y2(4) x2y2z2(5) (x+2)29 (6)(x+a)2(y+b)2(7) 25(a+b)24(ab)2 (8) 0.25(x+y)20.81(x y)23. 在边长为16.4cm 的正方形纸片的四角各剪去一边长为1.8cm 的正方形,求余下的纸片的面积。4. 已知 x2y2=1 , x+y=21,求 xy 的值。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 13 页名师精编优秀教案(六)作业利
7、用因式分解计算:(1)22200120031001(2)(1 221)(1 231)(1 241) (1 291)(1 2101) (3)已知: 4m+n=90 ,2m 3n=10,求(m+2n)2(3mn)2的值。课内练习随堂 123(课堂作业)课后练习补充习题教学反思精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 13 页名师精编优秀教案开发区七年级数学集体备课教案课题9.6 乘法公式的再认识因式分解 (二) 课 型新授课时1 整合时间2012-2-7 主备人刘爱芳授课人授课时间教 学目 标1、了解完全平方公式的特征,会用完全平方公
8、式进行因式分解。2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力。3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力。4、通过运用所学知识解决简单有趣的实际问题,激发了学生对数学学习的兴趣。重 点完全平方公式分解因式难 点掌握完全平方公式的特点突 破策 略课 前准 备教 学 设 计 详 案二次备课(一)创置情境情境 1 前面我们学习了因式分解的意义, 并且学会了一些因式分解的方法,运用学过的方法你能将a22a1分解因式吗?情境 2 在括号内填上适当的式子,使等式成立:(1)(a b)2( ) (2)(ab)2( ) (3)a2( )1(a1)2
9、(4)a2( )1(a1)2情境 3 观察一列整数: 1,4,9,16,25,有什么特点?数式是相通的,在整式中也有这样的情况,你能看出下列式子的特点吗?(1)a22a1 (2)a24a4 (3)a26a9 (4)a22abb2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 13 页名师精编优秀教案 (5)a22abb2情境 4 上节课我们学习了用平方差公式分解因式,而在整式乘法时我们还学习了什么公式?大家猜想一下本节课我们将学习什么内容? ( 二)认识完全平方公式把乘法公式 (ab)2a22abb2 (a b)2a22abb2反过来,
10、就得到 a22abb2(ab)2 a22abb2(a b)2提出问题自主探索:问题 1 两公式左边是几项式?三项式, 再考虑一下平方差公式。左边是几项式与之比较。问题 2 这三项式有什么特点?问题 3 若用代表 a,代表 b,两式是什么形式?222( )2,222()2问题 4 将 a24a4 符合吗?为什么?问题5 a26a9 符合吗?相当于a,相当于 b。 ( 三)知识运用例 1 把下列各式分解因式(1)x210 x25 (2)4a236ab81b2解:(1)x210 x25 (2) 4a236ab81b2x22x552 (2a)222a9b(9b)2 (x 5)2 (2a9b)2 1、下
11、列能直接用完全平方公式分解的是( ) Ax2 2xyy2 B x22xyy2 Cx2xy y2 D41x2xyy2 2、分解因式: a22abb2分解因式: a22abb2精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 13 页名师精编优秀教案3、分解因式 ( 板演) (1)a2 4a 4 (2)a2 12ab 36b2(3)25x210 xyy2探索活动二:公式中的a、b 可表示什么?学生讨论易知a、b 可以为任意的数、字母或多项式。如:a24a4 把 a 换成(mn) (mn)24(mn)4 怎么分解呢?请看例2 例 2 把下列各式
12、分解因式(1)16a48a21 (2)(mn)24(mn) 4 解:(1)16a48a21 (2) (mn)24(mn)4 (4a2)224a21 (mn)222(mn)22(4a21)2 (mn)22(mn2)216a48a21 (4a2)224a21 (4a21)2 ( 这里 4a21 可继续分解 ) (2a 1)(2a 1)2(2a1)2(2a1)2 例 3 (1)简便计算 20042-40082005+20052(2) 已知 a2-2a+b2+4b+5=0 ,求(a+b)2005的值。练一练:1、把下列各式分解因式(1)16a424a2b29b4 (2)(xy)210(x y) 25
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年开发区七年级数学集体备课教案 2022 开发区 七年 级数 集体 备课 教案
限制150内