功动能定理保守力的功课件.ppt
《功动能定理保守力的功课件.ppt》由会员分享,可在线阅读,更多相关《功动能定理保守力的功课件.ppt(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于功动能定理保守力的功1现在学习的是第1页,共51页4.1 4.1 功功 动能定理动能定理1 1、恒力直线运动的功、恒力直线运动的功在质点位移方向的分量与位移大小的乘积。在质点位移方向的分量与位移大小的乘积。力对空间积累效应用功来表示。力对空间积累效应用功来表示。FFS|cosrFArFr位移无限小时:位移无限小时:dA dA 称为称为元功元功元功元功质点发生微小的位质点发生微小的位移过程中,力所作的功移过程中,力所作的功rdFdA2现在学习的是第2页,共51页解决方法:由微积分的方法解决方法:由微积分的方法1)把路径无限分割成许多小段,把路径无限分割成许多小段,任取一小段位移(元位移);任
2、取一小段位移(元位移);2)在这段位移上质点受的力可以看成是恒在这段位移上质点受的力可以看成是恒力,在该微过程中的元功为:力,在该微过程中的元功为:ab1F1dr)总功等于各段上元功的总功等于各段上元功的代数和,即:代数和,即:|cosrdFrdFdAbabadsFrdFdAAcos2.变力曲线运动的功变力曲线运动的功rdF cosarbrdrro3现在学习的是第3页,共51页 力的功就是质点所受的力沿质点运动路径的线力的功就是质点所受的力沿质点运动路径的线积分积分babadsFrdFdAAcos0900dA,dsFrdFrdFdAcoscos018090dA,090dArdF说明:说明:1
3、1)功是标量,没有方向,但有大小正负。功是标量,没有方向,但有大小正负。Fdr ab4现在学习的是第4页,共51页4)在直角坐标系中功的解析式:在直角坐标系中功的解析式:b ba az zy yx xd dz z)F Fd dy yF Fd dx x(F FA AbardF3)合力的功合力的功=分力的功的代数和分力的功的代数和AA12baAF dr()baFFdr12bbaaF drFdr122)功是过程量,与路径有关。功是过程量,与路径有关。5现在学习的是第5页,共51页5)作功与参照系有关。作功与参照系有关。例如:传送带将箱子从例如:传送带将箱子从低处运到高处,地面上低处运到高处,地面上的
4、人看摩擦力作功了,的人看摩擦力作功了,而站在传送带上的人看而站在传送带上的人看摩擦力没有作功。摩擦力没有作功。静静f2.功率功率定义:定义:力在单位时间内所作的功力在单位时间内所作的功 表征作功快慢的物理量。表征作功快慢的物理量。FvFdtrdFdtdAtAPtcoslim06现在学习的是第6页,共51页例题例题某质点沿某质点沿x轴作直线运动,受力为轴作直线运动,受力为 ,试求质点从移动到,试求质点从移动到 的过程中该力的功。的过程中该力的功。NixF)(5400 xmx10 解:解:1002905454JdxxidxixrdFA)()(7现在学习的是第7页,共51页解:解:(一维运动可以用标
5、量)(一维运动可以用标量)rdFAtadtvv00JtdttdtttA7299363124303302vdtFtdtmF00203212tdtttdtdtdxFFdx例题例题 质量为质量为2kg的质点在力的质点在力 (SI)的作的作用下,从静止出发,沿用下,从静止出发,沿x轴正向作直线运动。求轴正向作直线运动。求前三秒内该力所作的功。前三秒内该力所作的功。i tF128现在学习的是第8页,共51页例题例题一抛体质量一抛体质量 m,计算从计算从 a 到到 b 这段路程这段路程中重力的功。中重力的功。解:解:drmgab yx抛体在重力场中运动,抛体在重力场中运动,mg是一恒量,是一恒量,但但m
6、的轨迹是一抛物线,的轨迹是一抛物线,取一元位移取一元位移dr在这一元段内写出元功在这一元段内写出元功 与位移的夹角与位移的夹角时时在变时时在变 mgmg drmg dy cosmg ds dAF dr()bamg yy bamgdy cosbaFds baAF dr9现在学习的是第9页,共51页建立坐标系;建立坐标系;在过程区间任选一元位移;在过程区间任选一元位移;写出元功写出元功,分析变量关系;分析变量关系;积分计算功;积分计算功;分析结果的物理意义。分析结果的物理意义。计算功的基本步骤计算功的基本步骤 由此例我们看到,功的计算主要在把握对元功由此例我们看到,功的计算主要在把握对元功的分析,
7、不论力是在变还是位移的方向在变,我们的分析,不论力是在变还是位移的方向在变,我们都只抓住任一元位移中,都可视它们是不变的,因都只抓住任一元位移中,都可视它们是不变的,因而可写出元功,这叫做而可写出元功,这叫做微元法微元法。10现在学习的是第10页,共51页 在计算变力的功时,必须知道力随位移的函数关在计算变力的功时,必须知道力随位移的函数关系,但在有些情况下力的变化比较复杂,难于找出这系,但在有些情况下力的变化比较复杂,难于找出这种固定的函数关系,使变力功的计算变得复杂。种固定的函数关系,使变力功的计算变得复杂。作功和物体状态变化有什么关系?作功和物体状态变化有什么关系?力对物体作功,其效果是
8、使质点的运动状态力对物体作功,其效果是使质点的运动状态发生变化。发生变化。11现在学习的是第11页,共51页合力对质点所做的功等于质点动能的增量。合力对质点所做的功等于质点动能的增量。1、质点的动能定理、质点的动能定理kkkEEEA 12是描写物体运动状态的物是描写物体运动状态的物理量,称为理量,称为动能动能。221mEk质点的动能定理为:质点的动能定理为:,sdFrdFrdFAttdtdmF t212221212121mmdmdsdtdmAvvvv 功和动能都与功和动能都与 参考系参考系有关;动能有关;动能定理仅适用于定理仅适用于惯性系惯性系.注意注意Fdr ab12现在学习的是第12页,共
9、51页1)动能定理的实质,说明了力的空间积累效应动能定理的实质,说明了力的空间积累效应是改变了物体的动能。是改变了物体的动能。明确几点:明确几点:2)功是功是过程量过程量,动能是,动能是状态量状态量,动能定理建,动能定理建立起过程量功与状态量动能之间的关系。在计立起过程量功与状态量动能之间的关系。在计算复杂的外力作功时只须求始末两态的动能变算复杂的外力作功时只须求始末两态的动能变化,即求出该过程的功。化,即求出该过程的功。bkaEF dr13现在学习的是第13页,共51页3)A为合外力作功的代数和,不是合外力中某为合外力作功的代数和,不是合外力中某一个力的功。动能定理中的速度必须相对同一个一个
10、力的功。动能定理中的速度必须相对同一个惯性系。惯性系。4)通过作功,质点与外界进行能量交换。通过作功,质点与外界进行能量交换。如果如果 外力对物体做负功,质点的动能减少,即外力对物体做负功,质点的动能减少,即物体克服外力作功,是以减少自身的动能为代价。物体克服外力作功,是以减少自身的动能为代价。如果如果 外力对物体做正功,质点动能增加;外力对物体做正功,质点动能增加;所以,动能是物体因运动而具有的作功的本领。所以,动能是物体因运动而具有的作功的本领。14现在学习的是第14页,共51页1.一对作用力与反作用力的功一对作用力与反作用力的功)(2112221112rrdfrdfrdfdA 1212r
11、df 2112ff 这一对相互作用力作功之和为:这一对相互作用力作功之和为:1221rrr 令令:设设 与与 是质点是质点m1、m2的一对作用力反作用力的一对作用力反作用力12f21fdt时间内,时间内,m1和和m2相对于相对于某参照系有位移某参照系有位移 和和1rd2rd 为为m1相对于相对于m2的位移。的位移。12rd1m2m1r12f21f1rd2rdxyzO2r二二、质点系的动能定理、质点系的动能定理15现在学习的是第15页,共51页1212rdfdA 同理:同理:2121rdfdA 一对相互作用力的总功等于其一对相互作用力的总功等于其中一个质点受的力点乘其相对另一中一个质点受的力点乘
12、其相对另一个质点的位移。个质点的位移。为为m1相对于相对于m2的位移。的位移。12rd 由于一对作用力的功只取决于两质点间的由于一对作用力的功只取决于两质点间的相对位移,因而与参照系的选择无关相对位移,因而与参照系的选择无关。1m2m1r12f21f1rd2rdxyzO2r16现在学习的是第16页,共51页 对其中第对其中第i个质点,动能定理可写为:个质点,动能定理可写为:2022121iiiiivmvmA Ai是作用在第是作用在第i个质点上的所有力对质点个质点上的所有力对质点i所作的所作的功,它既包括质点系以外其它物体所施的作用力功,它既包括质点系以外其它物体所施的作用力外力的功外力的功Ai
13、外外,又包括质点系内其它质点所施的作用,又包括质点系内其它质点所施的作用力力内力的功内力的功Ai内内。2022121iiiiiivmvmAA内内外外2.质点系的动能定理质点系的动能定理17现在学习的是第17页,共51页对所有质点求和:对所有质点求和:2022121iiiiiivmvmAA内内外外221iivm为质点系的动能,用为质点系的动能,用 表示表示质点系的动能定理质点系的动能定理 外力作功与内力作功代数和,等于质点系总动外力作功与内力作功代数和,等于质点系总动能的增量。能的增量。式中:式中:kkkiiEEEAA0内内外外有:有:kEAA内内外外kE18现在学习的是第18页,共51页注意:
14、注意:内力能改变系统的总动能,但不能改变系统的内力能改变系统的总动能,但不能改变系统的总动量。总动量。因为内力总是成对出现,而一对作用力反作用因为内力总是成对出现,而一对作用力反作用力的冲量为零,因而内力不能改变系统的动量。力的冲量为零,因而内力不能改变系统的动量。比如比如:子弹射入墙中,墙对子弹的摩擦力作负功,而子子弹射入墙中,墙对子弹的摩擦力作负功,而子弹对墙的摩擦力不作功,所以弹对墙的摩擦力不作功,所以 但是由于质点系内各质点间可以有相对位移,但是由于质点系内各质点间可以有相对位移,一般情况下,一般情况下,内力的功不一定为零内力的功不一定为零,所以内力作功所以内力作功可以改变质点系的总动
15、能。可以改变质点系的总动能。0内内A19现在学习的是第19页,共51页例题例题 质量为质量为m的小球系在线的一端,线的另一端固定的小球系在线的一端,线的另一端固定在墙壁钉子上,线长为在墙壁钉子上,线长为l。拉动小球使线保持水平静止。拉动小球使线保持水平静止后松手,求线摆下后松手,求线摆下 角时小球的速率。角时小球的速率。lgmTvdds解:解:m以以 为研究对象,受两力为研究对象,受两力mTmg和和0TAdsmgrdgmAmgcosmglldmg0sincos0212 mAAAmgTglvsin2 20现在学习的是第20页,共51页例题例题 一链条总长为一链条总长为l,质量为质量为m。放在桌面
16、上并使其放在桌面上并使其下垂,下垂的长度为下垂,下垂的长度为a,设链条与桌面的滑动摩擦,设链条与桌面的滑动摩擦系数为系数为,令链条从静止开始运动,则:,令链条从静止开始运动,则:1)到链条)到链条离开桌面的过程中,摩擦力对链条做了多少功?离开桌面的过程中,摩擦力对链条做了多少功?2)链条离开桌面时的速率是多少?链条离开桌面时的速率是多少?al-a xO解:解:(1)(1)建坐标系如图建坐标系如图 lalafdxxllmgrdfA)(注意:摩擦力作负功!注意:摩擦力作负功!lxlmgf/)(22)(2)(2allmgxllmgla 21现在学习的是第21页,共51页(2)对链条应用动能定理:对链
17、条应用动能定理:21222)()(alallgv得得20210mvAAvfP lalmgxdxlmgrdpAlalaP2)(22 lalmgAf2)(2 前已得出:前已得出:2222212)(2)(mvlalmglalmg 2022121mvmvAAAfPxl-x xO22现在学习的是第22页,共51页0dzmgAkdzjdyidxrd )(abmgzmgz kmgP zmgrPAbazzbadd 一、一、重力的功重力的功4.2 保守力的功保守力的功 势能势能xyOabr Prd23现在学习的是第23页,共51页0kxdxAikxFbabaxxxxkxdxFdxA)2121(22abkxkxA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动能 定理 保守力 功课
限制150内