高考椭圆几种题型67566(9页).doc
《高考椭圆几种题型67566(9页).doc》由会员分享,可在线阅读,更多相关《高考椭圆几种题型67566(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高考椭圆几种题型67566-第 9 页高考椭圆几种题型 引言 在高考之中占有比较重要的地位,并且占的分数也多。分析历年的高考试题,在选择题,填空题,大题都有椭圆的题。所以我们对知识必须系统的掌握。对各种题型,基本的解题方法也要有一定的了解。二 椭圆的知识(一)、定义1 平面内与与定点F1、F2的距离之和等于定长2a(2a|F1F2|)的点的轨迹叫做椭圆,其中F1、F2称为椭圆的焦点,|F1F2|称为焦距。其复数形式的方程为|Z-Z1|+| Z-Z2|=2a(2a|Z1-Z2|)2一动点到一个定点F的距离和它到一条直线的距离之比是一个大于0小于1的常数,则这个动点的轨迹叫椭圆,其中F称为椭圆的
2、焦点,l称为椭圆的准线。(二)、方程1中心在原点,焦点在x轴上:2中心在原点,焦点在y轴上:3 参数方程:4 一般方程:(三)、性质1 顶点:或2 对称性:关于,轴均对称,关于原点中心对称。3 离心率:4 准线5 焦半径:设为上一点,F1、F2为左、右焦点,则,;设为上一点,F1、F2为下、上焦点,则,。三 椭圆题型(一)椭圆定义 1.椭圆定义的应用例1 椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程分析:题目没有指出焦点的位置,要考虑两种位置解:(1)当为长轴端点时,椭圆的标准方程为:;(2)当为短轴端点时,椭圆的标准方程为:;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称
3、轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况例2 已知椭圆的离心率,求的值分析:分两种情况进行讨论解:当椭圆的焦点在轴上时,得由,得当椭圆的焦点在轴上时,得由,得,即满足条件的或说明:本题易出现漏解排除错误的办法是:因为与9的大小关系不定,所以椭圆的焦点可能在轴上,也可能在轴上故必须进行讨论例3 已知方程表示椭圆,求的取值范围解:由得,且满足条件的的取值范围是,且说明:本题易出现如下错解:由得,故的取值范围是出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆例4 已知表示焦点在轴上的椭圆,求的取值范围分析:依据已知条件确定的三角函数的大小关系再根据三角函数的单调性,求出的
4、取值范围解:方程可化为因为焦点在轴上,所以因此且从而说明:(1)由椭圆的标准方程知,这是容易忽视的地方(2)由焦点在轴上,知, (3)求的取值范围时,应注意题目中的条件例5 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程分析:关键是根据题意,列出点P满足的关系式解:如图所示,设动圆和定圆内切于点动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程这是求轨迹方程的一种重要思想方法 2.关于线段长最值的问题一般两个方法:一种是借助图形,
5、由几何图形中量的关系求最值,二是建立函数关系求最值,或用均值不等式来求最值。例(1):点P为为椭圆上一点,F1、F2是椭圆的两个焦点,试求:取得最值时的点坐标。解:(1)设,则。由椭圆第二定义知:。当时, 取最大值,此时点P(0,b);当时,取最小值b2,此时点P(a,0)。(二).焦半径及焦三角的应用例1 已知椭圆方程,长轴端点为,焦点为,是椭圆上一点,求:的面积(用、表示)分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限由余弦定理知: 由椭圆定义知: ,则得 故 例2.已知椭圆内有一点,、分别是椭圆的左、右焦
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 椭圆 题型 67566
限制150内