高等数学复旦大学出版第三版下册课后答案习题全(97页).doc
《高等数学复旦大学出版第三版下册课后答案习题全(97页).doc》由会员分享,可在线阅读,更多相关《高等数学复旦大学出版第三版下册课后答案习题全(97页).doc(96页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高等数学复旦大学出版第三版下册课后答案习题全-第 228 页习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第卦限;点B在第卦限;点C在第卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=
2、0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4);(3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3).解:(1)(2) (3) (4) .5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则解得 即所求点为M(0,0,).7. 试证:以三点A(4,
3、1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故ABC为等腰直角三角形.8. 验证:.证明:利用三角形法则得证.见图7-1 图7-19. 设试用a, b, c表示解:10. 把ABC的BC边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A连接,试以,表示向量,和.解:11. 设向量的模是4,它与投影轴的夹角是60,求这向量在该轴上的投影.解:设M的投影为,则12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A
4、的坐标.解:设此向量的起点A的坐标A(x, y, z),则解得x=-2, y=3, z=0故A的坐标为A(-2, 3, 0).13. 一向量的起点是P1(4,0,5),终点是P2(7,1,3),试求:(1) 在各坐标轴上的投影; (2) 的模;(3) 的方向余弦; (4) 方向的单位向量.解:(1)(2) (3) (4) .14. 三个力F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力R的大小和方向余弦.解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)15. 求出向量a= i +j+k, b=2i-3j+5k和c =-2i-j+2
5、k的模,并分别用单位向量来表达向量a, b, c.解:16. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x轴上的投影ax=13,在y轴上分向量为7j.17.解:设则有 求得. 设在面上的投影向量为则有 则 则 求得 又则 从而求得或18. 已知两点M1(2,5,-3),M2(3,-2,5),点M在线段M1M2上,且,求向径的坐标.解:设向径=x, y, z因为,所以,故=.19. 已知点P到点A(0,0,12)的
6、距离是7,的方向余弦是,求点P的坐标.解:设P的坐标为(x, y, z), 得又故点P的坐标为P(2,3,6)或P().20. 已知a, b的夹角,且,计算:(1) ab; (2) (3a-2b)(a + 2b).解:(1)ab =(2) 21. 已知a =(4,-2, 4), b=(6,-3, 2),计算:(1)ab; (2) (2a-3b)(a + b); (3)解:(1)(2) (3) 22. 已知四点A(1,-2,3),B(4,-4,-3),C(2,4,3),D(8,6,6),求向量在向量上的投影.解:=3,-2,-6,=6,2,323. 若向量a+3b垂直于向量7a-5b,向量a-4
7、b垂直于向量7a-2b,求a和b的夹角.解: (a+3b)(7a-5b) = (a-4b)(7a-2b) = 由及可得:又,所以,故.24. 设a=(-2,7,6),b=(4, -3, -8),证明:以a与b为邻边的平行四边形的两条对角线互相垂直.证明:以a,b为邻边的平行四边形的两条对角线分别为a+b,ab,且a+b=2,4, -2a-b=-6,10,14又(a+b)(a-b)= 2(-6)+410+(-2)14=0故(a+b)(a-b).25. 已知a =3i+2j-k, b =i-j+2k,求:(1) ab; (2) 2a7b;(3) 7b2a; (4) aa.解:(1) (2) (3)
8、 (4) .26. 已知向量a和b互相垂直,且.计算:(1) |(ab)(ab)|;(2) |(3ab)(a2b)|.(1)(2) 27. 求垂直于向量3i-4j-k和2i-j +k的单位向量,并求上述两向量夹角的正弦.解:与平行的单位向量28. 一平行四边形以向量a =(2,1,1)和b=(1,2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为因为,所以 .即为所求对角线间夹角的正弦.29. 已知三点A(2,-1,5), B(0,3,-2), C(-2,3,1),点M,N,P分别是AB,BC,CA的中点,证明:.证明:中点M,N,P的坐标分别为故 .30.(1)解: 则 若共面,则有后
9、与是垂直的. 从而 反之亦成立. (2)由行列式性质可得:故31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积.解:设四顶点依次取为A, B, C, D.则由A,B,D三点所确定三角形的面积为同理可求其他三个三角形的面积依次为.故四面体的表面积.32.解:设四面体的底为,从点到底面的高为,则 而 又所在的平面方程为: 则 故33. 已知三点A(2,4,1), B(3,7,5), C(4,10,9),证:此三点共线.证明:,显然则故A,B,C三点共线.34. 一动点与M0(1,1,1)连成的向量与向量n=(2,3,-4)垂直,求动点的轨迹方程.
10、解:设动点为M(x, y, z)因,故.即2(x-1)+3(y-1)-4(z-1)=0整理得:2x+3y-4z-1=0即为动点M的轨迹方程.35. 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s=3-1,1+2,-1-1=2,3,-2故直线的标准方程为: 或 (2)直线方向向量可取为s=1-3,0+1,-3-0=-2,1,-3故直线的标准方程为: 或 36. 求直线的标准式方程和参数方程.解:所给直线的方向向量为另取x0=0代入直线一般方程可解得y0=7,z0=17于是直线过点(0,7
11、,17),因此直线的标准方程为:且直线的参数方程为:37. 求过点(4,1,-2)且与平面3x-2y+6z=11平行的平面方程.解:所求平面与平面3x-2y+6z=11平行故n=3,-2,6,又过点(4,1,-2)故所求平面方程为:3(x-4)-2(y-1)+6(z+2)=0即3x-2y+6z+2=0.38. 求过点M0(1,7,-3),且与连接坐标原点到点M0的线段OM0垂直的平面方程.解:所求平面的法向量可取为故平面方程为:x-1+7(y-7)-3(z +3)=0即x+7y-3z-59=039. 设平面过点(1,2,-1),而在x轴和z轴上的截距都等于在y轴上的截距的两倍,求此平面方程.解
12、:设平面在y轴上的截距为b则平面方程可定为又(1,2,-1)在平面上,则有得b=2.故所求平面方程为40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知代入三已知点,有化简得x-3y-2z=0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x-1=0;(3) 2x-3y-6=0; (4) x y =0;(5) 2x-3y+4z=0.解:(1) y =0表示xOz坐标面(如图7-2)(2) 3x-1=0表示垂直于x轴的平面.(如图7-3) 图7-2 图7-3(3) 2x-3y-6=0表示平行于
13、z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面.解:设平面方程为Ax+By+Cz+D=0则其法向量为n=A,B,C已知平面法向量为n1=1,1,-1过已知两点的向量l=1,1,1由题知nn1=0, nl=0即所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合
14、下列条件:(1)经过点(5,-4,6); (2) 与平面2x-3y+z=0成的角.解:(1) 因平面过点(5,-4,6)故有 5-4k-26=9得k=-4.(2) 两平面的法向量分别为n1=1,k,-2 n2=2,-3,1且解得44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行; (2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1=2,l,3, n2=m,-6,-1(2) n1=3, -5, l , n2=1,3,245. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:
15、设所求平面方程为Ax+By+Cz+D=0其法向量n=A,B,Cn1=1,-1,1, n2=2,1,1又(1,1,1)在所求平面上,故AB+C+D=0,得D=0故所求平面方程为即2x-y-3z=046. 求平行于平面3x-y+7z=5,且垂直于向量i-j+2k的单位向量.解:n1=3,-1,7, n2=1,-1,2.故则47. 求下列直线与平面的交点:(1) , 2x+3y+z-1=0;(2) , x+2y-2z+6=0.解:(1)直线参数方程为代入平面方程得t=1故交点为(2,-3,6).(2) 直线参数方程为代入平面方程解得t=0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)
16、和 ;(2) 和 解:(1)两直线的方向向量分别为:s1=5, -3,33, -2,1=3,4, -1s2=2,2, -13,8,1=10, -5,10由s1s2=310+4(-5)+( -1) 10=0知s1s2从而两直线垂直,夹角为.(2) 直线的方向向量为s1=4, -12,3,直线的方程可变为,可求得其方向向量s2=0,2, -11,0,0=0, -1, -2,于是49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x-y+2z-4=0垂直;(2)过点(0,2,4),且与两平面x+2z=1和y-3z=2平行;(3)过点(-1,2,1),且与直线平行.解:(1)
17、可取直线的方向向量为s=3,-1,2故过点(2,-3,4)的直线方程为(2)所求直线平行两已知平面,且两平面的法向量n1与n2不平行,故所求直线平行于两平面的交线,于是直线方向向量故过点(0,2,4)的直线方程为(3)所求直线与已知直线平行,故其方向向量可取为s=2,-1,3故过点(-1,2,1)的直线方程为50. 试定出下列各题中直线与平面间的位置关系:(1)和4x-2y-2z=3;(2)和3x-2y+7z=8;(3)和x+y+z=3.解:平行而不包含. 因为直线的方向向量为s=-2,-7,3平面的法向量n=4,-2,-2,所以于是直线与平面平行.又因为直线上的点M0(-3,-4,0)代入平
18、面方程有.故直线不在平面上.(2) 因直线方向向量s等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线的平面方程.解:直线的方向向量为,取平面法向量为1,2,3,故所求平面方程为即x+2y+3z=0.52. 求过点(1,-2,3)和两平面2x-3y+z=3, x+3y+2z+1=0的交线的平面方程.解:设过两平面的交线的平面束方程为其中为待定常数,又因为所求平面过点(1,-2,3)故解得=-4.故所求平面方程为2x+15y+7z+7=053. 求点(-1,2,0)在平面x+2y-z+1=0上的投影.
19、解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s=n=1,2,-1所以垂线的参数方程为将其代入平面方程可得(-1+t)+2(2+2t)-(-t)+1=0得于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点54. 求点(3,-1,2)到直线的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即故过已知点的平面方程为y+z=1.联立方程组解得即为平面与直线的垂足于是点到直线的距离为55. 求点(1,2,1)到平面x+2y+2z-10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s=n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 复旦大学 出版 第三 下册 课后 答案 习题 97
限制150内