《苏教版小学平面几何图形的十大解法.doc》由会员分享,可在线阅读,更多相关《苏教版小学平面几何图形的十大解法.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、几何图形的十大解法(30例)一、 分割法例1: 将两个相等的长方形重合在一起,求组合图形的 面积。(单位:厘米) 2 例2: 下列两个正方形边长分别为8厘米和5厘米, 求阴影部分面积。 例3: 左图中两个正方形的边长分别为8厘米和6厘米。 求阴影部分面积。 二、 添辅助线例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。求阴影部分面积。 C P D B A例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方厘米,平行四边形底20.4厘米,高8厘米。梯形下底是多少厘米? 例3: 平行四边形的面积是48平方厘米,BC分别是 A 这个平行四边形相邻两条边的中点
2、,连接A、 B B、C得到4个三角形。求阴影部分的面积。C 三、 倍比法例1: A B 已知:OC=2AO,SABO=2,求梯形ABCD O 的面积。 D C 例2: 7.5 已知:S阴=8.75 ,求下图梯形的面积。 2.5例3: A 下图AB是AD的3倍,AC是AE的5倍, D E 那么三角形ABC的面积是三角形ADE的多少 倍? B C四、 割补平移例1: A B 已知:S阴=20, EF为中位线 E F 求梯形ABCD的面积。 D C 例2: 10 求左图面积(单位:厘米)5 5 10 例3: 把一个长方形的长和宽分别增加2 a 2 厘米,面积增加24平方厘米。 b 求原长方形的周长。
3、 2 2 五、 等量代换例1: B 已知:AB平行于EC,求阴影部分面积。 A O C 8 E 10 D (单位:m)例2:下图两个正方形边长分别是6分米、4分米。求阴影部分面积。 4 1 3 2 例3:已知三角形ABC的面积等于三角形AED的面积(形状大小都相同),它们重叠在一起,比较三角形BDF和三角形CEF的面积大小。( ) A A 三角形DBF大 B三角形CEF大 D C C两个三角形一样大 D无法比较B F E六、 等腰直角三角形例1: 已知长方形周长为22厘米,长7 厘米,求 阴影部分面积。 45 例2: 已知下列两个等腰直角三角形,直角边分别 是10厘米和6厘米。求阴影部分的面积
4、。 2 例3: 下图长方形长9厘米,宽6厘米,求阴影部分 A B 面积。 45 F E D C 七、 扩倍、缩倍法例1: 如图:正方形面积是32 平方厘米,直角三角形 中的短直角边是长直角边的四分之一,三角形 a 面积是多少平方厘米? b 例2: 求左下图的面积(单位:米)。 30 30 40 例3: 左图中每个小方格都是面积为3平方厘米的 正方形。求阴影部分面积。 八、 代数法例1:图中三角形甲的面积比乙的面积少8平方厘 米,AB=8cm,CE=6cm。求三角形甲和三角形乙的面积各是多少? A 甲 D 8 乙 F B C 6 E 例2:B 左图所示,AF=12,ED=10,BE=8,CF=6
5、(单位:厘米)C 求四边形ABCD的面积是多少平方厘米? A E F D 例3: 左图是一个等腰三角形,它的腰长是20厘米, 面积是144平方厘米。在底边上任取一点向两腰 20 20 作垂线,得a和b,求a+b的和。 a b 九、 看外高例1: 下图两个正方形的边长分别是6厘米和3厘米, 求阴影部分的面积。 例2: 下图长方形长10厘米,宽7厘米,求阴影部分面积。 2 例3:A D F 正方形ABCD的边长是18厘米,CE=2DE E (1)求三角形CEF的面积。 B C (2)求DF的长度。十、 概念法例1:一个直角三角形,三条边分别为4厘米、6厘米和7厘米。求它的面积。 例2:用4个直角边分别是3厘米、4厘米和5厘米的直角三角形拼成一个菱形。这个菱形的周长和面积各是多少? 例3:一个平行四边形两条边分别是5厘米和3厘米,其中一条高为 4.2,求这个平行四边形的面积。微信扫描二维码关注:天天文学社,获取更多免费学习资料微信扫描二维码关注:优秀教师之家,获取更多教学资源您的支持,是我们努力的动力!
限制150内