多项式插值与逼近.ppt
《多项式插值与逼近.ppt》由会员分享,可在线阅读,更多相关《多项式插值与逼近.ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、多项式插值与逼近多项式插值与逼近现在学习的是第1页,共15页 对于插值曲线而言,曲线上的这些数据点与参数域内的点构成一种对应关系。一组数据点决定一个参数分割,称为对数据点实行参数化(parametrization)对数据点实行参数化有如下方法:1.均匀参数化(等距参数化)法 仅适合于数据点多边形各边(或称弦长)接近相等的场合。注意:即使数据点各弦长严格相等,也不表示插值曲线的参数化是均匀的,插值曲线的参数化与数据点的参数化有关,但不是一回事。2.积累弦长参数化(简称弦长参数化)法 其中,为向前差分矢量3.向心参数化法(平方根法)-10-1u=0=+iiiuuPiP-1012-1u=0=+iii
2、u uP现在学习的是第2页,共15页4.福利(Foley,1989)参数化法(修正弦长参数化法)有些看不懂-10i-1u=0=+kiiiu uP3.2 多项式插值曲线 当构造多项式插值曲线时,必须使曲线方程的待定系数矢量的个数等于给定的插值条件数即数据点数目。在构造顺序通过数据点Pi(i=0,1,n)的多项式插值曲线时,(1)若采用的多项式基为幂基时,得插值曲线方程为nj=0(u)=jjpau现在学习的是第3页,共15页 设已对数据点实行了参数化,决定了参数分割01:.unu uu将参数值代入曲线方程,使之满足插值条件nij=0(u)=jjiipauP可将其写成矩阵的形式,也可以将插值曲线方程
3、写成嵌套乘积的形式,这样便于编程,减少舍入误差。用此方法来构造插值曲线时,需要解线性方程组,当n很大时,系数矩阵呈现病态,此方法不可取现在学习的是第4页,共15页(2)拉格朗日多项式插值法是最古老的插值方法.参数形式的拉格朗日插值曲线方程为:njj=0(u)=p(u)jpL其中,是拉格朗日基,它满足插值条件(u)jLnijiij=0(u)=p(u)=P jpLiji0 ij(u)=1 i=jjL给定约束方程,其中的符号是克罗内克尔符号现在学习的是第5页,共15页 拉格朗日基具有规范性,公式具有明显的规律性,数据点Pi在曲线方程中显示的出现,这些都是拉格朗日插值的优点,缺点在于数据点改变时,原来
4、的数据不能使用,必须重新计算。(4)牛顿均差形式-10ji=1=0(u)=d+d(u-u)jnjip这里引入了另外一组基:1,u,(u-u0)*(u-u1).,矢量dj是数据点Pi的j阶均差矢量。(5)埃尔米特插值此方法不是对n+1个点及其导矢进行插值,而是在两个数据点P0、P1及其直到K阶的导矢之间进行插值1(r)i=0=0(u)=(u)kirirpp H有点不懂现在学习的是第6页,共15页3.3最小二乘逼近最小二乘逼近 本节所讲的最小二乘逼近的分析方法与学过的理论相似,只是曲线的方程采用了基表示的参数多项式形式。根据前几节的知识,对于给定数据点,可以选择适当的方法进行参数化,决定一个参数分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多项式 逼近
限制150内