多元回归分析假设检验.ppt
《多元回归分析假设检验.ppt》由会员分享,可在线阅读,更多相关《多元回归分析假设检验.ppt(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、多元回归分析假设检验1现在学习的是第1页,共42页Assumptions of the Classical Linear Model(CLM)nSo far,we know that given the Gauss-Markov assumptions,OLS is BLUE,nIn order to do classical hypothesis testing,we need to add another assumption(beyond the Gauss-Markov assumptions)nAssume that u is independent of x1,x2,xk and
2、u is normally distributed with zero mean and variance s s2:u Normal(0,s2)2现在学习的是第2页,共42页CLM Assumptions(cont.)nUnder CLM,OLS is not only BLUE,but is the minimum variance unbiased estimator,which means that OLS has the smallest variance among unbiased estimators;we no longer have to restrict our comp
3、arison to estimators that are linear in yi.nWe can summarize the population assumptions of CLM as followsny|x Normal(b0+b1x1+bkxk,s2)nWhile for now we just assume normality,clear that sometimes not the casenLarge samples will let us drop normality3现在学习的是第3页,共42页.x1x2The homoskedastic normal distribu
4、tion with a single explanatory variableE(y|x)=b0+b1xyf(y|x)Normaldistributions4现在学习的是第4页,共42页Normal Sampling Distributions 2222j1,1errors theofn combinatiolinear a isit becausenormally ddistribute is 0,1Normal thatso,Normal st variableindependen theof valuessample theon lconditiona s,assumption CLM
5、Under thejjjjjjjjjjjjRSSTsdRSSTVarsdVarsbsbbbbbbbb5现在学习的是第5页,共42页The t Test 1,11:freedom of degrees theNoteby estimate tohave webecausenormal)(vson distributi a is thisNote sassumption CLM Under the2222221knuRSSTseknttseijjjknjjjssbssbbb6现在学习的是第6页,共42页The t Test(cont)nKnowing the sampling distributi
6、on for the standardized estimator allows us to carry out hypothesis testsnStart with a null hypothesisnFor example,H0:bj=0nIf accept null,then accept that xj has no effect on y,controlling for other xs7现在学习的是第7页,共42页The t Test(cont)0jH,hypothesis null accept theo whether tdetermine torulerejection a
7、 withalong statistic our use then willWe:for statistic theform toneedfirst eour test w perform Totsettjjjbbbb8现在学习的是第8页,共42页t Test:One-Sided Alternativesn Besides our null,H0,we need an alternative hypothesis,H1,and a significance leveln H1 may be one-sided,or two-sidedn H1:bj 0 and H1:bj 0One-Sided
8、 Alternatives(cont)0ca1 aFail to rejectreject abbabbbb1orcsePctPcsePctPjjjjjj11现在学习的是第11页,共42页An Example:Hourly Wage EquationnWage determination:(wooldridge,p123)nlog(wge)=0.284+0.092educ+0.0041exper+0.022tenuren (0.104)(0.007)(0.0017)(0.003)n n=526 R2=0.316nWhether the return to exper,controlling f
9、or educ and tenure,is zero in the population,against the alternative that it is positive.nH0:bexper=0 vs.H1:bexper 0nThe t statistic is t=0.0041/0.00172.41nThe degree of freedom:df=n-k-1=526-3-1=522nThe critical value of 5%is 1.645nAnd the t statistic is larger than the critical value,ie.,2.411.645n
10、That is,we will reject the null hypothesis and bexper is really positive.01.6451 aFail to reject5%reject12现在学习的是第12页,共42页Another example:Student Performance and School SizenWhether the school size has effect on student performance?qmath10,math test scores,reveal the student performanceqtotcomp,avera
11、ge annual teacher compensationqstaff,the number of staff per one thousand studentsqenroll,student enrollment,reveal the school size.nThe Model Equationqmath10=b0+b1totcomp+b2staff+b3enrollqH0:benroll=0,H1:benroll-1.645,so we cant reject the null hypothesis.-1.645reject-09113现在学习的是第13页,共42页One-sided
12、vs Two-sidednBecause the t distribution is symmetric,testing H1:bj 0 is straightforward.The critical value is just the negative of beforenWe can reject the null if the t statistic than c then we fail to reject the nullnFor a two-sided test,we set the critical value based on a/2 and reject H1:bj 0 if
13、 the absolute value of the t statistic c14现在学习的是第14页,共42页yi =b0 +b1Xi1 +bkXik+uiH0:bj=0 H1:bj 0c0a/21 a-ca/2Two-Sided Alternativesrejectrejectfail to reject abbabbbb1orcsePctPcsePctPjjjjjj15现在学习的是第15页,共42页Summary for H0:bj=0nUnless otherwise stated,the alternative is assumed to be two-sidednIf we re
14、ject the null,we typically say“xj is statistically significant at the a%level”nIf we fail to reject the null,we typically say“xj is statistically insignificant at the a%level”16现在学习的是第16页,共42页An Example:Determinants of College GPA(wooldridge,p128)nVariables:qcolGPA,college GPAqskipped,the average nu
15、mber of lectures missed per weekqACT,achievement test scoreqhsGPA,high school GPAnThe estimated modelqolGPA=1.39+0.412 hsGPA+0.015 ACT 0.083 skippedq (0.33)(0.094)(0.011)(0.026)q n=141,R2=0.234nH0:bskipped=0,H1:bskipped 0nfd:n-k-1=137,the critical value t137=1.96nThe t statistic is|-0.083/0.026|=3.1
16、9 t137=1.96,so we will reject the null hypothesis and the bskipped is signanificantly beyond zero.-1.96reject-3.191.96reject17现在学习的是第17页,共42页Testing other hypothesesnA more general form of the t statistic recognizes that we may want to test something like H0:bj=aj nIn this case,the appropriate t sta
17、tistic is teststandard for the 0 where,jjjjaseatbb18现在学习的是第18页,共42页An Example:Campus Crime and Enrollment(wooldridge,p129)lVariableslcrime,the annual number of crimes on college campuseslenroll,student enrollment,reveal the size of college.lThe regression modelllog(crime)=b0+b1log(enroll)+ulWhether
18、b1=1,that is H0:b1=1,H1:b1 1llog(crime)=6.63+1.27 log(enroll)l (1.03)(0.11)n=97 R2=0.585ldf:n-k-1=95,the critical value at 5%is t95=1.645lThe t-statistic is(1.27-1)/0.112.45t95=1.645lSo we reject the null hypothesis and the evidence prove that b1 1.19现在学习的是第19页,共42页An Example:House Prices and Air Po
19、llution(wooldridge,p131)nVariablesqprice,median housing price;qnox,the amount of nitrogen oxide in the air,in parts per million;qdist,a weighted distance of the community from five employment centers,in miles;qrooms,the average number of rooms in houses in the communityqStratio,the average student-t
20、eacher ratio of schools in the community.nThe estimated modelqlog(prie)=11.08-0.954log(nox)-0.134log(dis)+0.255rooms-0.052stratioq (0.32)(0.117)(0.043)(0.019)(0.006)q n=506 R2=581nThe null hypothesis H0:blog(nox)=-1,H1:blog(nox)-1nThe t statistic is(-0.954-(-1)/0.117=0.393,and the critical value t=1
21、.96.0.393|t|”and“95%Conf.Interval”,respectively23现在学习的是第23页,共42页Testing a Linear Combinationn Suppose instead of testing whether b1 is equal to a constant,you want to test if it is equal to another parameter,that is H0:b1=b2,or b1-b2=0n Use same basic procedure for forming a t statistic2121bbbbset24
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 回归 分析 假设检验
限制150内